解:(1)在正△ABC中,∠ABC=∠ACB=60°,AB=BC,
∴∠ABE=∠BCD,
∵

,
∴△ABE≌△BCD,
∴∠E=∠D,
∵∠EBF=∠CBD,
∴∠AFB=∠E+∠EBF=∠D+∠CBD=∠ACB=60°;
(2)在正四邊形ABCM中,∠ABC=∠ACB=90°,AB=BC
∴∠ABE=∠BCD,
∵

,
∴△ABE≌△BCD,
∴∠E=∠D,
∵∠EBF=∠CBD,
∴∠AFB=∠E+∠EBF=∠D+∠CBD=∠MCB=90°;
(3)在正五邊形ABCM中,∠ABC=∠ACB=108°,AB=BC,
∴∠ABE=∠BCD,
∵

,
∴△ABE≌△BCD,
∴∠E=∠D,
∵∠EBF=∠CBD,
∴∠AFB=∠E+∠EBF=∠D+∠CBD=∠MCB=108°.
故答案為:108°;
(4)結(jié)論:∠AFB=∠MCB=

在正n邊形ABCM…N中,
∠ABC=∠MCB=

,AB=BC,
∴∠ABE=∠BCD,
∵

,
∴△ABE≌△BCD,
∴∠E=∠D,
∵∠EBF=∠CBD,
∴∠AFB=∠E+∠EBF=∠D+∠CBD=∠MCB=

;
(5)由(1)同理即可得出:∠AFB=∠E+∠EBF=∠D+∠CBD=∠MCB=120°.
故答案為:120°.
分析:(1)可通過證三角形AEB和BDC全等得出∠E=∠D,再根據(jù)∠EBF=∠CBD,那么這兩個三角形的外角∠AFB,∠ACB就應(yīng)該相等.從而得出∠AFB的度數(shù).
(2)都和(1)相同,都要先證明三角形ABE和BCD全等,然后得出角相等來求解.
(3)都和(1)相同,都要先證明三角形ABE和BCD全等,然后得出角相等來求解.
(4)由正三角形、正四邊形、正五邊形時,∠AFB的度數(shù)分別為60°,90°,108°,可得出“正n邊形”,其它條件不變,則∠AFB度數(shù)為=

;
(5)都和(1)相同,都要先證明三角形ABE和BCD全等,然后得出角相等來求解.
點評:此題主要考查了正三角邊形,正四邊形的性質(zhì),正五邊形的性質(zhì)與等邊三角形與相似三角形的性質(zhì)以及規(guī)律問題應(yīng)用,利用三角形全等得出角之間關(guān)系是解題關(guān)鍵.