【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來,各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點生產(chǎn),某企業(yè)準(zhǔn)備購買三臺口罩生產(chǎn)設(shè)備,型號分別為A,B,C,已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元;也可以在設(shè)備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應(yīng)同時購買的易耗品的件數(shù),該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)查每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.
每臺設(shè)備一個月中使用的易耗品的件數(shù) | 6 | 7 | 8 | |
頻數(shù) | 型號A | 30 | 30 | 0 |
型號B | 20 | 30 | 10 | |
型號C | 0 | 45 | 15 |
將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨立.
(1)求該單位一個月中A,B,C三臺設(shè)備使用的易耗品總數(shù)超過21件(不包括21件)的概率;
(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?
【答案】(1);(2)該單位在購買設(shè)備時應(yīng)同時購買21件易耗品
【解析】
(1)由題中表格數(shù)據(jù),分別求出三個型號設(shè)備在一個月使用易耗品的件數(shù)所對應(yīng)的頻率,設(shè)該單位三臺設(shè)備在一個月中使用的易耗品的總件數(shù)為X,可知,分別求出
和
,即可求出答案;
(2)分別求出兩種情況下,一個月購買易耗品所需總費用的所有可能值,并求出對應(yīng)的概率,從而可求出兩種情況的期望,比較二者大小,可得出結(jié)論.
(1)由題中表格可知,
A型號的設(shè)備一個月中使用易耗品的件數(shù)為6和7的頻率均為;
B型號的設(shè)備一個月中使用易耗品的件數(shù)為6,7,8的頻率分別為,
,
;
C型號的設(shè)備一個月中使用易耗品的件數(shù)為7和8的頻率分別為,
,
設(shè)該單位一個月中A,B,C三臺設(shè)備使用易耗品的件數(shù)分別為x,y,z,則
,
,
,
,
,
.
設(shè)該單位三臺設(shè)備一個月中使用的易耗品的總件數(shù)為X,
則.
而
,
,
故,
即該單位一個月中A,B,C三臺設(shè)備使用的易耗品總數(shù)超過21件的概率為.
(2)該單位三臺設(shè)備一個月中使用的易耗品的總件數(shù)為X,可能的取值為19,20,21,22,23.
,
,
,
由(1)知,,
.
若該單位在購買設(shè)備的同時購買了20件易耗品,設(shè)該單位一個月中購買易耗品所需的總費用為元,
則的所有可能取值為2000,2200,2400,2600.
,
,
,
,
所以.
若該單位在購買設(shè)備的同時購買了21件易耗品,設(shè)該單位一個月中購買易耗品所需的總費用為Z元,
則Z的所有可能取值為2100,2300,2500.
,
,
,
所以.
因為,即
,所以該單位在購買設(shè)備時應(yīng)同時購買21件易耗品.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時,都有
成立,求
的取值范圍;
(Ⅲ)試問過點可作多少條直線與曲線
相切?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列說法:①設(shè),
,則“
”是“
”的充分不必要條件;②若
,則
,使得
;③
為等比數(shù)列,則“
”是“
”的充分不必要條件;④命題“
,
,使得
”的否定形式是“
,
,使得
” .其中正確說法的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,
是等邊三角形,底面
是直角梯形,
,
,
,
,
,
分別是
,
的中點.
(1)①求證:平面
;
②求線段的長度;
(2)若,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足
,
時,
.
(1)當(dāng)時,求數(shù)列
的前
項和
;
(2)當(dāng)時,求證:對任意
,
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來,各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點生產(chǎn),某企業(yè)準(zhǔn)備購買三臺口罩生產(chǎn)設(shè)備,型號分別為A,B,C,已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元;也可以在設(shè)備使用過程中,隨時單獨購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應(yīng)同時購買的易耗品的件數(shù),該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)查每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計表如下所示.
每臺設(shè)備一個月中使用的易耗品的件數(shù) | 6 | 7 | 8 | |
頻數(shù) | 型號A | 30 | 30 | 0 |
型號B | 20 | 30 | 10 | |
型號C | 0 | 45 | 15 |
將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨立.
(1)求該單位一個月中A,B,C三臺設(shè)備使用的易耗品總數(shù)超過21件(不包括21件)的概率;
(2)以該單位一個月購買易耗品所需總費用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f1(x)=x2,f2(x)=alnx(其中a>0).
(1)求函數(shù)f(x)=f1(x)·f2(x)的極值;
(2)若函數(shù)g(x)=f1(x)-f2(x)+(a-1)x在區(qū)間(,e)內(nèi)有兩個零點,求正實數(shù)a的取值范圍;
(3)求證:當(dāng)x>0時,.(說明:e是自然對數(shù)的底數(shù),e=2.71828…)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的一個焦點與上、下頂點構(gòu)成直角三角形,以橢圓
的長軸長為直徑的圓與直線
相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過橢圓右焦點且不平行于軸的動直線與橢圓
相交于
兩點,探究在
軸上是否存在定點
,使得
為定值?若存在,試求出定值和點
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com