已知定義在上的函數(shù)
(其中
).
(Ⅰ)解關(guān)于的不等式
;
(Ⅱ)若不等式對(duì)任意
恒成立,求
的取值范圍.
(Ⅰ)當(dāng)時(shí),
,原不等式的解集為
;
當(dāng)時(shí),
,原不等式的解集為
;
當(dāng)時(shí),
,原不等式的解集為
.
(Ⅱ).
解析試題分析:(Ⅰ),
而,
等價(jià)于
,于是
當(dāng)時(shí),
,原不等式的解集為
; 2分
當(dāng)時(shí),
,原不等式的解集為
; 4分
當(dāng)時(shí),
,原不等式的解集為
6分
(Ⅱ)不等式,即
恒成立 8分
又當(dāng)時(shí),
=
(當(dāng)且僅當(dāng)
時(shí)取“=”號(hào)). 10分
12分
考點(diǎn):一元二次不等式的解法,不等式恒成立問(wèn)題,均值定理的應(yīng)用。
點(diǎn)評(píng):中檔題,含參數(shù)的一元二次不等式問(wèn)題,優(yōu)先考慮“因式分解法”,注意討論要“不重不漏”。不等式恒成立問(wèn)題,常常轉(zhuǎn)化成求函數(shù)的最值。求函數(shù)的最值,應(yīng)用導(dǎo)數(shù)或均值定理較多。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在點(diǎn)
處的切線(xiàn)方程是x+ y-l=0,其中e為自然對(duì)數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對(duì)一切x∈(0,+
)均有
恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)(Ⅰ)若函數(shù)
在
上單調(diào)遞減,在區(qū)間
單調(diào)遞增,求
的值;
(Ⅱ)若函數(shù)在
上有兩個(gè)不同的極值點(diǎn),求
的取值范圍;
(Ⅲ)若方程有且只有三個(gè)不同的實(shí)根,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)當(dāng)時(shí),函數(shù)
取得極大值,求實(shí)數(shù)
的值;
(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間
內(nèi)存在導(dǎo)數(shù),則存在
,使得
. 試用這個(gè)結(jié)論證明:若函數(shù)
(其中
),則對(duì)任意
,都有
;
(Ⅲ)已知正數(shù)滿(mǎn)足
,求證:對(duì)任意的實(shí)數(shù)
,若
時(shí),都
有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在
上是減函數(shù),求實(shí)數(shù)
的最小值;
(3)若,使
成立,求實(shí)數(shù)
取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(Ⅰ)設(shè),求
的單調(diào)區(qū)間;
(Ⅱ) 設(shè),且對(duì)于任意
,
.試比較
與
的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)已知對(duì)定義域內(nèi)的任意
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
函數(shù)為奇函數(shù),其圖象在點(diǎn)
處的切線(xiàn)與直線(xiàn)
垂直,導(dǎo)函數(shù)
的最小值為
.
(1)求,
,
的值;
(2)求函數(shù)的單調(diào)遞增區(qū)間,并求函數(shù)
在
上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com