如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<)圖像上一個最高點(diǎn)坐標(biāo)為(2,2
),這個最高點(diǎn)到相鄰最低點(diǎn)的圖像與x軸交于點(diǎn)(5,0).
(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得將函數(shù)f(x)的圖像向右平移m個單位后得到一個偶函數(shù)的圖像?若存在,求m的最小值;若不存在,請說明理由.
(1)f(x)=2sin
,
(2)m的最小值為4.
解析試題分析:解:(1)由題意知A=2,
=3,
∴T=12,∴ω==
,
∴f(x)=2sin
,
∵圖像過(2,2),∴2
=2
sin
,
∴sin=1,
令+φ=
,∴φ=
,
∴f(x)=2sin
. 6分
(2)假設(shè)存在m,則有
f(x-m)=2sin
=2cos
=2cos
∵f(x-m)為偶函數(shù),
∴+
m=kπ,k∈Z
∴m=6k-2,∴k=1時m=4.
∴存在m,m的最小值為4. 13分
考點(diǎn):三角函數(shù)的圖象與解析式
點(diǎn)評:主要是考查了三角函數(shù)的解析式以及性質(zhì)的運(yùn)用,屬于中檔題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知,
,
在
處的切線方程為
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求的解析式;
(III)當(dāng)時,
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè), 已知函數(shù)
(Ⅰ) 證明在區(qū)間(-1,1)內(nèi)單調(diào)遞減, 在區(qū)間(1, + ∞)內(nèi)單調(diào)遞增;
(Ⅱ) 設(shè)曲線在點(diǎn)
處的切線相互平行, 且
證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若在實數(shù)集R上單調(diào)遞增,求
的范圍;
(Ⅱ)是否存在實數(shù)使
在
上單調(diào)遞減.若存在求出
的范圍,若不存在說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
己知函數(shù).
(I)求f(x)的極小值和極大值;
(II)當(dāng)曲線y = f(x)的切線的斜率為負(fù)數(shù)時,求
在x軸上截距的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)(e為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若對于任意,不等式
恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=-x3+
x2-2x(a∈R).
(1)當(dāng)a=3時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對于任意x∈[1,+∞)都有f′(x)<2(a-1)成立,求實數(shù)a的取值范圍;
(3)若過點(diǎn)可作函數(shù)y=f(x)圖象的三條不同切線,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com