亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    已知數(shù)列{an}滿足遞推關(guān)系式:an+2an-an+12=tn(t-1),(n∈N*),且a1=1,a2=t.(t為常數(shù),且t>1)
    (1)求a3
    (2)求證:{an}滿足關(guān)系式an+2-2tan+1+tan=0,(n∈N*;
    (3)求證:an+1>an≥1(n∈N*).

    解:(1)由a3a1-a22=t(t-1)和a1=1,a2=t
    ∴a3=2t2-t…(4分)
    (2)由an+2an-an+12=tn(t-1),(n∈N*
    得an+1an-1-an2=tn-1(t-1)(n≥2),
    再由上兩式相除得到:∴an+2an-an+12=tan+1an-1-tan2
    ∴an(an+2+tan)=an+1(an+1+tan-1

    為常數(shù)列

    而a3+ta1=2t2
    即an+2-2tan+1+tan=0.…(9分)
    (3)由t>1知:an+2an>an+12≥0
    ∴an+2an>0
    故an+2與an同號
    而a1=1>0,a2=t>0.
    故an>0.



    ∴an+1>an
    ∴an≥1
    ∴an+1>an≥1.…(14分)
    分析:(1)由a3a1-a22=t(t-1)和a1=1,a2=t,能求出a3
    (2)由an+2an-an+12=tn(t-1),(n∈N*)得an+1an-1-an2=tn-1(t-1)(n≥2),所以an+2an-an+12=tan+1an-1-tan2,由此能夠證明an+2-2tan+1+tan=0.
    (3)由t>1知:an+2an>an+12≥0,所以an+2an>0,故an+2與an同號,由此能夠證明an+1>an≥1.
    點(diǎn)評:本題考查數(shù)列的性質(zhì)和應(yīng)用,解題時要認(rèn)真審題,仔細(xì)解答,注意不等式性質(zhì)的合理運(yùn)用.
    練習(xí)冊系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    已知數(shù)列{an}滿足:a1=1且an+1=
    3+4an
    12-4an
    , n∈N*

    (1)若數(shù)列{bn}滿足:bn=
    1
    an-
    1
    2
    (n∈N*)
    ,試證明數(shù)列bn-1是等比數(shù)列;
    (2)求數(shù)列{anbn}的前n項和Sn
    (3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知數(shù)列{an}滿足
    1
    2
    a1+
    1
    22
    a2+
    1
    23
    a3+…+
    1
    2n
    an=2n+1
    則{an}的通項公式
     

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知數(shù)列{an}滿足:a1=
    3
    2
    ,且an=
    3nan-1
    2an-1+n-1
    (n≥2,n∈N*).
    (1)求數(shù)列{an}的通項公式;
    (2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
    (1)若a1=
    54
    ,求an;
    (2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
    2n-1
    2n-1

    查看答案和解析>>

    同步練習(xí)冊答案