【題目】改革開(kāi)放以來(lái),中國(guó)快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的
萬(wàn)件提升到2018年的
億件,快遞行業(yè)的發(fā)展也給我們的生活帶來(lái)了很大便利.已知某市某快遞點(diǎn)的收費(fèi)標(biāo)準(zhǔn)為:首重(重量小于等于
)收費(fèi)
元,續(xù)重
元
(不足
按
算). (如:一個(gè)包裹重量為
則需支付首付
元,續(xù)重
元,一共
元快遞費(fèi)用)
(1)若你有三件禮物重量分別為
,要將三個(gè)禮物分成兩個(gè)包裹寄出(如:
合為一個(gè)包裹,
一個(gè)包裹),那么如何分配禮物,使得你花費(fèi)的快遞費(fèi)最少?
(2)對(duì)該快遞點(diǎn)近天的每日攬包裹數(shù)(單位:件)進(jìn)行統(tǒng)計(jì),得到的日攬包裹數(shù)分別為
件,
件,
件,
件,
件,那么從這
天中隨機(jī)抽出
天,求這
天的日攬包裹數(shù)均超過(guò)
件的概率.
【答案】(1)一個(gè)包裹,
一個(gè)包裹時(shí)花費(fèi)的運(yùn)費(fèi)最少,為
元;(2)
.
【解析】
(1)分一個(gè)包裹,
一個(gè)包裹,
一個(gè)包裹,
一個(gè)包裹,
一個(gè)包裹,
一個(gè)包裹三種情況討論;
(2)采用枚舉法,枚舉出基本事件總數(shù)以及事件“天的日攬包裹數(shù)均超過(guò)
件”所包含的基本事件個(gè)數(shù),再利用古典概型的概率計(jì)算公式計(jì)算即可.
解:一個(gè)包裹,
一個(gè)包裹時(shí),需花費(fèi)
(元),
一個(gè)包裹,
一個(gè)包裹時(shí),需花費(fèi)
(元),
一個(gè)包裹,
一個(gè)包裹時(shí),需花費(fèi)
(元),
綜上,一個(gè)包裹,
一個(gè)包裹時(shí)花費(fèi)的運(yùn)費(fèi)最少,為
元.
天中有
天的日攬包裹數(shù)超過(guò)
件,
記這三天為其余兩天為
從天中隨機(jī)抽出
天的所有基本事件如下:
,
,
一共種,
天的日攬包裹數(shù)均超過(guò)
件的基本事件有,
一共
種,
所以從這天中隨機(jī)抽出
天,
天的日攬件數(shù)均超過(guò)
件的概率為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:x24py(p為大于2的質(zhì)數(shù))的焦點(diǎn)為F,過(guò)點(diǎn)F且斜率為k(k0)的直線交C于A,B兩點(diǎn),線段AB的垂直平分線交y軸于點(diǎn)E,拋物線C在點(diǎn)A,B處的切線相交于點(diǎn)G.記四邊形AEBG的面積為S.
(1)求點(diǎn)G的軌跡方程;
(2)當(dāng)點(diǎn)G的橫坐標(biāo)為整數(shù)時(shí),S是否為整數(shù)?若是,請(qǐng)求出所有滿足條件的S的值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】.極坐標(biāo)系于直角坐標(biāo)系有相同的長(zhǎng)度單位,以原點(diǎn)
為極點(diǎn),以
正半軸為極軸.已知曲線
的極坐標(biāo)方程為
,曲線
的極坐標(biāo)方程為
,射線
,
,
,
與曲線
分別交異于極點(diǎn)
的四點(diǎn)
.
(1)若曲線關(guān)于曲線
對(duì)稱,求
的值,并把曲線
和
化成直角坐標(biāo)方程;
(2)設(shè),當(dāng)
時(shí),求
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.
(1)討論函數(shù)_f(x)的單調(diào)性;
(2)若 ,且
有2 個(gè)不同的極值點(diǎn)
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓臺(tái)的軸截面為等腰梯形
,
圓臺(tái)
的側(cè)面積為
.若點(diǎn)
分別為圓
上的動(dòng)點(diǎn),且點(diǎn)
在平面
的同側(cè).
(1)求證:;
(2)若,則當(dāng)三棱錐
的體積取最大值時(shí),求多面體
的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開(kāi)放以來(lái),中國(guó)快遞行業(yè)持續(xù)快速發(fā)展,快遞業(yè)務(wù)量從上世紀(jì)年代的
萬(wàn)件提升到2018年的
億件,快遞行業(yè)的發(fā)展也給我們的生活帶來(lái)了很大便利.已知某市某快遞點(diǎn)的收費(fèi)標(biāo)準(zhǔn)為:首重(重量小于等于
)收費(fèi)
元,續(xù)重
元
(不足
按
算). (如:一個(gè)包裹重量為
則需支付首付
元,續(xù)重
元,一共
元快遞費(fèi)用)
(1)若你有三件禮物重量分別為
,要將三個(gè)禮物分成兩個(gè)包裹寄出(如:
合為一個(gè)包裹,
一個(gè)包裹),那么如何分配禮物,使得你花費(fèi)的快遞費(fèi)最少?
(2)為了解該快遞點(diǎn)2019年的攬件情況,在2019年內(nèi)隨機(jī)抽查了天的日攬收包裹數(shù)(單位:件),得到如下表格:
包裹數(shù)(單位:件) | ||||
天數(shù)(天) |
現(xiàn)用這天的日攬收包裹數(shù)估計(jì)該快遞點(diǎn)2019年的日攬收包裏數(shù).若從2019年任取
天,記這
天中日攬收包裹數(shù)超過(guò)
件的天數(shù)為隨機(jī)變量
求
的分布列和期望
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若數(shù)列滿足所有的項(xiàng)均由
構(gòu)成且其中
有
個(gè),
有
個(gè)
,則稱
為“
﹣數(shù)列”.
(1)為“
﹣數(shù)列”
中的任意三項(xiàng),則使得
的取法有多少種?
(2)為“
﹣數(shù)列”
中的任意三項(xiàng),則存在多少正整數(shù)
對(duì)使得
且
的概率為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(
),
是
的導(dǎo)數(shù).
(1)當(dāng)時(shí),令
,
為
的導(dǎo)數(shù).證明:
在區(qū)間
存在唯一的極小值點(diǎn);
(2)已知函數(shù)在
上單調(diào)遞減,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,高爾頓板是英國(guó)生物統(tǒng)計(jì)學(xué)家高爾頓設(shè)計(jì)的用來(lái)研究隨機(jī)現(xiàn)象的模型,它是在一塊豎起的木板上釘上一排排互相平行,水平間隔相等的圓柱形鐵釘,并且每一排釘子數(shù)目都比上一排多一個(gè),一排中各個(gè)釘子恰好對(duì)準(zhǔn)上面一排兩相鄰鐵釘?shù)恼醒耄瑥娜肟谔幏湃胍粋(gè)直徑略小于兩顆釘子間隔的小球,當(dāng)小球從兩釘之間的間隙下落時(shí),由于碰到下一排鐵釘,它將以相等的可能性向左或向右落下,接著小球再通過(guò)兩釘?shù)拈g隙,又碰到下一排鐵釘,如此繼續(xù)下去,在最底層的5個(gè)出口處各放置一個(gè)容器接住小球,那么,小球落入1號(hào)容器的概率是______,若取4個(gè)小球進(jìn)行試驗(yàn),設(shè)其中落入4號(hào)容器的小球個(gè)數(shù)為x,則x的數(shù)學(xué)期望是______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com