亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    【題目】若函數(shù)在區(qū)間上恰好有一個(gè)零點(diǎn),則的最小值為______.

    【答案】

    【解析】

    將函數(shù)在區(qū)間上有一個(gè)零點(diǎn)等價(jià)于方程在區(qū)間,上恰有一個(gè)根,也即是函數(shù)和函數(shù)的圖象在區(qū)間上恰好有一個(gè)交點(diǎn),由二次函數(shù)得出函數(shù)的值域,令,再分當(dāng)時(shí),當(dāng)時(shí),兩種情況下兩函數(shù)圖象的交點(diǎn)情況得出的范圍,根據(jù)雙勾函數(shù)可求得的最小值.

    依題意,函數(shù)在區(qū)間,上有一個(gè)零點(diǎn)等價(jià)于方程在區(qū)間,上恰有一個(gè)根,

    函數(shù)和函數(shù)的圖象在區(qū)間上恰好有一個(gè)交點(diǎn),

    函數(shù)關(guān)于對(duì)稱,在上有最小值,時(shí),,,

    函數(shù),令,

    當(dāng)時(shí),由復(fù)合函數(shù)單調(diào)性知單調(diào)遞減,當(dāng)時(shí),,

    所以函數(shù)和函數(shù)的圖象在區(qū)間上無(wú)交點(diǎn),

    當(dāng)時(shí),由復(fù)合函數(shù)單調(diào)性知單調(diào)遞增,如圖,

    由圖可知,當(dāng)時(shí),函數(shù)圖象恰好有1個(gè)交點(diǎn),

    此時(shí),解得,

    因?yàn)?/span>上單調(diào)遞增,所以,即的最小值為,

    故答案為:.

    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】2022年北京冬奧運(yùn)動(dòng)會(huì)即第24屆冬季奧林匹克運(yùn)動(dòng)會(huì)將在202224日至220日在北京和張家口舉行,某研究機(jī)構(gòu)為了了解大學(xué)生對(duì)冰壺運(yùn)動(dòng)的興趣,隨機(jī)從某大學(xué)生中抽取了100人進(jìn)行調(diào)查,經(jīng)統(tǒng)計(jì)男生與女生的人數(shù)比為,男生中有20人表示對(duì)冰壺運(yùn)動(dòng)有興趣,女生中有15人對(duì)冰壺運(yùn)動(dòng)沒(méi)有興趣.

    1)完成列聯(lián)表,并判斷能否有把握認(rèn)為“對(duì)冰壺運(yùn)動(dòng)是否有興趣與性別有關(guān)”?

    有興趣

    沒(méi)有興趣

    合計(jì)

    20

    15

    合計(jì)

    100

    2)用分層抽樣的方法從樣本中對(duì)冰壺運(yùn)動(dòng)有興趣的學(xué)生中抽取6人,求抽取的男生和女生分別為多少人?若從這6人中選取兩人作為冰壺運(yùn)動(dòng)的宣傳員,求選取的2人中恰好有1位男生和1位女生的概率.

    附:,其中

    0.150

    0.100

    0.050

    0.025

    0.010

    2.072

    2.076

    3.841

    5.024

    6.635

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】如圖,在三棱柱中,側(cè)面為邊長(zhǎng)為的菱形,側(cè)面為矩形,其中,平面,點(diǎn)的中點(diǎn).

    1)證明:平面;

    2)求二面角的余弦值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】已知某種新型病毒的傳染能力很強(qiáng),給人們生產(chǎn)和生活帶來(lái)很大的影響,所以創(chuàng)新研發(fā)疫苗成了當(dāng)務(wù)之急.為此,某藥企加大了研發(fā)投入,市場(chǎng)上這種新型冠狀病毒的疫苗的研發(fā)費(fèi)用(百萬(wàn)元)和銷量(萬(wàn)盒)的統(tǒng)計(jì)數(shù)據(jù)如下:

    研發(fā)費(fèi)用(百萬(wàn)元)

    2

    3

    6

    10

    13

    14

    銷量(萬(wàn)盒)

    1

    1

    2

    2.5

    4

    4.5

    1)根據(jù)上表中的數(shù)據(jù),建立關(guān)于的線性回歸方程(用分?jǐn)?shù)表示);

    2)根據(jù)所求的回歸方程,估計(jì)當(dāng)研發(fā)費(fèi)用為1600萬(wàn)元時(shí),銷售量為多少?

    參考公式:,.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】遼寧省六校協(xié)作體(葫蘆島第一高中、東港二中、鳳城一中、北鎮(zhèn)高中、瓦房店高中、丹東四中)中的某校文科實(shí)驗(yàn)班的名學(xué)生期中考試的語(yǔ)文、數(shù)學(xué)成績(jī)都不低于分,其中語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,成績(jī)分組區(qū)間是:、、

    1)根據(jù)頻率分布直方圖,估計(jì)這名學(xué)生語(yǔ)文成績(jī)的中位數(shù)和平均數(shù);(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;中位數(shù)精確到

    2)若這名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:

    分組區(qū)間

    從數(shù)學(xué)成績(jī)?cè)?/span>的學(xué)生中隨機(jī)選取人,求選出的人中恰好有人數(shù)學(xué)成績(jī)?cè)?/span>的概率.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】已知拋物線的焦點(diǎn)為上位于第一象限的任意一點(diǎn),過(guò)點(diǎn)的直線于另一點(diǎn),交軸的正半軸于點(diǎn).

    (1)若當(dāng)點(diǎn)的橫坐標(biāo)為,且為等腰三角形,求的方程;

    (2)對(duì)于(1)中求出的拋物線,若點(diǎn),記點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為軸于點(diǎn),且,求證:點(diǎn)的坐標(biāo)為,并求點(diǎn)到直線的距離的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】某保險(xiǎn)公司給年齡在歲的民眾提供某種疾病的一年期醫(yī)療保險(xiǎn),現(xiàn)從名參保人員中隨機(jī)抽取名作為樣本進(jìn)行分析,按年齡段分成了五組,其頻率分布直方圖如下圖所示;參保年齡與每人每年應(yīng)交納的保費(fèi)如下表所示. 據(jù)統(tǒng)計(jì),該公司每年為這一萬(wàn)名參保人員支出的各種費(fèi)用為一百萬(wàn)元.

    年齡

    (單位:歲)

    保費(fèi)

    (單位:元)

    1)用樣本的頻率分布估計(jì)總體分布,為使公司不虧本,求精確到整數(shù)時(shí)的最小值;

    2)經(jīng)調(diào)查,年齡在之間老人每人中有人患該項(xiàng)疾病(以此頻率作為概率).該病的治療費(fèi)為元,如果參保,保險(xiǎn)公司補(bǔ)貼治療費(fèi).某老人年齡歲,若購(gòu)買該項(xiàng)保險(xiǎn)(中的).針對(duì)此疾病所支付的費(fèi)用為元;若沒(méi)有購(gòu)買該項(xiàng)保險(xiǎn),針對(duì)此疾病所支付的費(fèi)用為.試比較的期望值大小,并判斷該老人購(gòu)買此項(xiàng)保險(xiǎn)是否劃算?

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,左右焦點(diǎn)分別是,以為圓心,3為半徑的圓與以為圓心,1為半徑的圓相交,且交點(diǎn)在橢圓C.

    1)求橢圓C的方程.

    2)設(shè)橢圓,P為橢圓C上任意一點(diǎn),過(guò)點(diǎn)P的直線交橢圓EA、B兩點(diǎn),射線OP交橢圓E于點(diǎn)Q.

    ①判斷是否為定值?若是定值求出該定值,若不是定值說(shuō)明理由.

    ②求面積的最大值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來(lái)源: 題型:

    【題目】在平面直角坐標(biāo)系中,已知曲線為參數(shù)),直線 為參數(shù), ),直線與曲線相切于點(diǎn),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

    1)求曲線的極坐標(biāo)方程及點(diǎn)的極坐標(biāo);

    2)曲線的直角坐標(biāo)方程為,直線的極坐標(biāo)方程為,直線與曲線交于在,兩點(diǎn),記的面積為,的面積為,求的值.

    查看答案和解析>>

    同步練習(xí)冊(cè)答案