【題目】若定義在上的函數(shù)
,
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若、
、
滿足
,則稱
比
更接近
.當(dāng)
,試比較
和
哪個(gè)更接近
,并說明理由.
【答案】(1)當(dāng)時(shí),
的單調(diào)增區(qū)間為
;當(dāng)
時(shí),
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
;(2)
比
更接近
,理由見解析.
【解析】
(1)對(duì)求導(dǎo),分
與
進(jìn)行討論,可得其單調(diào)區(qū)間;
(2)設(shè),
,分別對(duì)
與
求導(dǎo),可得當(dāng)
時(shí),
,
,當(dāng)
時(shí),可得
,
設(shè),對(duì)其求導(dǎo)可得答案.
解:(1),
①當(dāng)時(shí),
,函數(shù)
在
上單調(diào)遞增;
②當(dāng)時(shí),令
得
,
令,得
,
單調(diào)遞增,
令,得
,
單調(diào)遞減;
綜上,當(dāng)時(shí),函數(shù)
的單調(diào)增區(qū)間為
;
當(dāng)時(shí),函數(shù)
的單調(diào)增區(qū)間為
,
單調(diào)減區(qū)間為.
(2)設(shè),
,
,
在
,
上為減函數(shù),又
(e)
,
當(dāng)
時(shí),
.
,
在
,
上為增函數(shù),又
(e)
,
當(dāng)
時(shí),
,
在
上為增函數(shù),
.
當(dāng)時(shí),
,
設(shè),則
,
在
是減函數(shù),
(e)
,
在
是減函數(shù),
(e)
,
,
比
更接近
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:;
(2)當(dāng)時(shí),不等式
恒成立,求實(shí)數(shù)
的最大值和
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知直線l的參數(shù)方程為:,
為參數(shù)
點(diǎn)的極坐標(biāo)為
,曲線C的極坐標(biāo)方程為
.
Ⅰ
試將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,并求曲線C的焦點(diǎn)在直角坐標(biāo)系下的坐標(biāo);
Ⅱ
設(shè)直線l與曲線C相交于兩點(diǎn)A,B,點(diǎn)M為AB的中點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,
,三角形
為等邊三角形,二面角
的余弦值為
,當(dāng)三棱錐
的體積最大值為
時(shí),三棱錐
的外接球的表面積為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,南寧大力實(shí)施“二產(chǎn)補(bǔ)短板、三產(chǎn)強(qiáng)優(yōu)勢(shì)、一產(chǎn)顯特色”策略,著力發(fā)展實(shí)體經(jīng)濟(jì),工業(yè)取得突飛猛進(jìn)的發(fā)展.逐步形成了以電子信息、機(jī)械裝備、食品制糖、鋁深加工等為主的4大支柱產(chǎn)業(yè).廣西洋浦南華糖業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如下表所示,已知
.
(1)求出q的值;
(2)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價(jià)x(元)的線性回歸方程;
(3)用表示用(2)中所求的線性回歸方程得到的與
對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)
對(duì)應(yīng)的殘差的絕對(duì)值
時(shí),則將銷售數(shù)據(jù)
稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6個(gè)銷售數(shù)據(jù)中任取3個(gè),求“好數(shù)據(jù)”個(gè)數(shù)
的數(shù)學(xué)期望Eξ.
(參考公式:線性回歸方程中的最小二乘估計(jì)分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的底面是等腰梯形,
,
,
,
,
為等邊三角形,且點(diǎn)P在底面
上的射影為
的中點(diǎn)G,點(diǎn)E在線段
上,且
.
(1)求證:平面
.
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠采用甲、乙兩種不同生產(chǎn)方式生產(chǎn)某零件,現(xiàn)對(duì)兩種生產(chǎn)方式所生產(chǎn)的這種零件的產(chǎn)品質(zhì)量進(jìn)行對(duì)比,其質(zhì)量按測(cè)試指標(biāo)可劃分為:指標(biāo)在區(qū)間100的為一等品;指標(biāo)在區(qū)間
的為二等品
現(xiàn)分別從甲、乙兩種不同生產(chǎn)方式所生產(chǎn)的零件中,各自隨機(jī)抽取100件作為樣本進(jìn)行檢測(cè),測(cè)試指標(biāo)結(jié)果的頻率分布直方圖如圖所示:
若在甲種生產(chǎn)方式生產(chǎn)的這100件零件中按等級(jí),利用分層抽樣的方法抽取10件,再從這10件零件中隨機(jī)抽取3件,求至少有1件一等品的概率;
將頻率分布直方圖中的頻率視作概率,用樣本估計(jì)總體
若從該廠采用乙種生產(chǎn)方式所生產(chǎn)的所有這種零件中隨機(jī)抽取3件,記3件零件中所含一等品的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)設(shè)函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)如果對(duì)所有的≥0,都有
≤
,求
的最小值;
(Ⅲ)已知數(shù)列中,
,且
,若數(shù)列
的前n項(xiàng)和為
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
.
(Ⅰ)若函數(shù)與
的圖像在點(diǎn)
處有相同的切線,求
的值;
(Ⅱ)當(dāng)時(shí),
恒成立,求整數(shù)
的最大值;
(Ⅲ)證明:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com