亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    已知圓O:x2+y2=1和定點(diǎn)A(2,1),由圓O外一點(diǎn)P(a,b)向圓O引切線PQ,切點(diǎn)為Q,且滿足|PQ|=|PA|
    (1)求實(shí)數(shù)a、b間滿足的等量關(guān)系;
    (2)若以P為圓心所作的圓P與圓O有公共點(diǎn),試求半徑取最小值時(shí)圓P的方程.
    分析:(1)由已知Q為切點(diǎn),可知PQ⊥OQ,結(jié)合勾股定理有|PQ|2=|OP|2-|OQ|2及已知|PQ|=|PA|,利用兩點(diǎn)間的距離公式可得a,b之間的關(guān)系
    (2)設(shè)圓P的半徑為R,由圓P與圓O有公共點(diǎn),且半徑最小,可知R=OP,利用兩點(diǎn)間的距離,結(jié)合(1)中a,b的關(guān)系可轉(zhuǎn)化為關(guān)于a的二次形式,結(jié)合二次函數(shù)的性質(zhì)可求R的最小值,進(jìn)而可求圓的方程
    法二:圓P與圓O有公共點(diǎn),圓P半徑最小時(shí)為與圓O外切的情形,而這些半徑的最小值為圓心O到直線l的距離減去1,圓心為P過原點(diǎn)與l垂直的直線l'與l的交點(diǎn)P0,可求
    解答:解:(1)連OP,∵Q為切點(diǎn),PQ⊥OQ,由勾股定理有|PQ|2=|OP|2-|OQ|2
    ∵|PQ|=|PA|故PA2=PO2-1
    ∴a2+b2-1=(a-2)2+(b-1)2
    化簡(jiǎn)可得,2a+b-3=0
    (2)設(shè)圓P的半徑為R,
    ∵圓P與圓O有公共點(diǎn),且半徑最小,
    ∴R=|OP|=
    a2+b2
    =
    a2+(-2a+3)2
    =
    5(a-
    6
    5
    )
    2
    +
    9
    5
    ,
    故當(dāng)a=
    6
    5
    時(shí),|OP|min=
    3
    5
    5

    此時(shí),b=-2a+3=
    3
    5
    ,Rmin=
    3
    5
    5
    -1

    得半徑取最小值時(shí)圓P的方程為(x-
    6
    5
    )2+(y-
    3
    5
    )2=(
    3
    5
    5
    -1)2

    另解:圓P與圓O有公共點(diǎn),圓P半徑最小時(shí)為與圓O外切的情形,而這些半徑的最小值為圓心O到直線l的距離減去1,圓心為P過原點(diǎn)與l垂直的直線l'與l的交點(diǎn)P0
    r=
    3
    22+12
    -1=
    3
    5
    5
    -1.
    又l':x-2y=0,
    解方程組
    x-2y=0
    2x+y-3=0
    ,得
    x=
    6
    5
    y=
    3
    5
    .即P0( 
    6
    5
    3
    5
    ).
    ∴所求圓方程為(x-
    6
    5
    )2+(y-
    3
    5
    )2=(
    3
    5
    5
    -1)2
    點(diǎn)評(píng):本題主要考查了圓的性質(zhì)的簡(jiǎn)單應(yīng)用,還考查了一定的邏輯推理與運(yùn)算的能力,試題具有一定的綜合性
    練習(xí)冊(cè)系列答案
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點(diǎn),曲線C是以AB為長(zhǎng)軸,離心率為
    2
    2
    的橢圓,其左焦點(diǎn)為F.若P是圓O上一點(diǎn),連接PF,過原點(diǎn)O作直線PF的垂線交橢圓C的左準(zhǔn)線于點(diǎn)Q.
    (1)求橢圓C的標(biāo)準(zhǔn)方程;
    (2)若點(diǎn)P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
    (3)試探究:當(dāng)點(diǎn)P在圓O上運(yùn)動(dòng)時(shí)(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請(qǐng)證明;若不是,請(qǐng)說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
    x2
    a2
    +
    y2
    b2
    =1(a>b>0)
    有一個(gè)公共點(diǎn)A(0,1),F(xiàn)為橢圓的左焦點(diǎn),直線AF被圓所截得的弦長(zhǎng)為1.
    (1)求橢圓方程.
    (2)圓o與x軸的兩個(gè)交點(diǎn)為C、D,B( x0,y0)是橢圓上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),在線段CD上是否存在點(diǎn)T(t,0),使|BT|=|AT|,若存在,請(qǐng)說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知圓O:x2+y2=9,定點(diǎn) A(6,0),直線l:3x-4y-25=0
    (1)若P為圓O上動(dòng)點(diǎn),求線段PA的中點(diǎn)M的軌跡方程
    (2)設(shè)E、F分別是圓O和直線l上任意一點(diǎn),求線段EF的最小值.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2012•廣州一模)已知圓O:x2+y2=r2,點(diǎn)P(a,b)(ab≠0)是圓O內(nèi)一點(diǎn),過點(diǎn)P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么( 。

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    已知圓O:x2+y2=1,點(diǎn)P在直線x=
    3
    上,O為坐標(biāo)原點(diǎn),若圓O上存在點(diǎn)Q,使∠OPQ=30°,則點(diǎn)P的縱坐標(biāo)y0的取值范圍是( 。

    查看答案和解析>>

    同步練習(xí)冊(cè)答案