安徽省宿州二中2008―2009學(xué)年度高三模擬考試(3)
數(shù)學(xué)試題(理)
本試卷分第I卷(選擇題)和第II卷(非選擇題)兩部分. 共150分,測(cè)試時(shí)間120分鐘.
第Ⅰ卷(選擇題 共60分)
注意事項(xiàng):
1.答第1卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考試科目寫在答題卡上.
2.每小題選出答案后,用HB或者2B鉛筆把答題卡上的對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑.如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào).不能答在試題卷上.
一、選擇題:本大題共12個(gè)小題. 每小題5分,共60分. 在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
1、設(shè)函數(shù)的定義域?yàn)榧螹,集合N=
,則
A.
B.N C.
D.M
2、已知橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
倍,則橢圓的離心率等于
A. B.
C.
D.
3、如果執(zhí)行的程序框圖(右圖所示),那么輸出的
A.2450 B.2500 C.2550 D.2652
4、若曲線的一條切線
與直線
垂直,則切線的方程為、
A、 B、
C、 D、
5、方程有實(shí)根的概率為
A、
B、
C、
D、
6、已知是平面,
是直線,則下列命題中不正確的是、
A、若∥
,則
B、若
∥
,則
∥
C、若,則
∥
D、若
,則
7、一張正方形的紙片,剪去兩個(gè)一樣的小矩形得到一個(gè)“
”圖案,
如圖所示,設(shè)小矩形的長(zhǎng)、寬分別為、
,剪去部分的面積為
,
若,記
,則
的圖象是
8、將函數(shù)的圖象先向左平移
,然后將所得圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的
倍(縱坐標(biāo)不變),則所得到的圖象對(duì)應(yīng)的函數(shù)解析式為
A. B.
C.
D.
第2卷(非選擇題,共110分)
二、填空題:本大題共7小題,其中13~15題是選做題,考生只能選做兩題,三題全答的,只計(jì)算前兩題得分.每小題5分,滿分30分.
9、已知向量,
,若
,則實(shí)數(shù)
的值等于
.
10、已知,則
=
.
11、是虛數(shù)單位,則
.
12、函數(shù)由下表定義:
l
l
l
l
l
l
l
l
l
l
l
l
若,
,
,則
.
13、(坐標(biāo)系與參數(shù)方程選做題)曲線:
上的點(diǎn)到曲線
:
上的點(diǎn)的最短距離為
.
14、(不等式選講選做題)已知實(shí)數(shù)
滿足
,則
的最大值為
.
15、(幾何證明選講選做題)如圖,平行四邊形中,
,若
的面積等于1cm
,
則的面積等于
cm
.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過程和演算步驟.
16、(本小題滿分12分)
設(shè)正項(xiàng)等比數(shù)列的前
項(xiàng)和為
, 已知
,
.
(1)求首項(xiàng)和公比
的值;
(2)若,求
的值.
17、(本小題滿分12分)
設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),
的最大值為2,求
的值,并求出
的對(duì)稱軸方程.
18、(本小題滿分14分)
一個(gè)口袋中裝有大小相同的2個(gè)白球和4個(gè)黑球.
(1)采取放回抽樣方式,從中摸出兩個(gè)球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個(gè)球,求摸得白球的個(gè)數(shù)的期望和方差.
(方差:)
19、(本小題滿分14分)
如圖,已知四棱錐
的底面
是菱形;
平面
,
,點(diǎn)
為
的中點(diǎn).
(1)求證:平面
;
(2)求二面角的正切值.
20、(本小題滿分14分)
給定圓P:及拋物線S:
,過圓心
作直線
,此直線與上述兩曲線的四個(gè)交點(diǎn),自上而下順次記為
,如果線段
的長(zhǎng)按此順序構(gòu)成一個(gè)等差數(shù)列,求直線
的方程.
21、(本小題滿分14分)
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程
有實(shí)數(shù)根;②
函數(shù)的導(dǎo)數(shù)
滿足
”.
(1)判斷函數(shù)是否是集合M中的元素,并說(shuō)明理由;
(2)集合M中的元素具有下面的性質(zhì):若
的定義域?yàn)镈,則對(duì)于任意[m,n]
D,都存在
[m,n],使得等式
成立”,試用這一性質(zhì)證明:方程
只有一個(gè)實(shí)數(shù)根;
(3)設(shè)是方程
的實(shí)數(shù)根,求證:對(duì)于
定義域中任意的
,當(dāng)
,且
時(shí),
.
一、選擇題:
l 題號(hào)
l
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
l
1、解析:,N=
,
即.答案:
.
2、解析:由題意得,
又.
答案:.
3、解析:程序的運(yùn)行結(jié)果是.答案:
.
4、解析:與直線垂直的切線
的斜率必為4,而
,所以,切點(diǎn)為
.切線為
,即
,答案:
.
5、解析:由一元二次方程有實(shí)根的條件,而
,由幾何概率得有實(shí)根的概率為
.答案:
.
6、解析:如果兩條平行直線中的一條垂直于一個(gè)平面,那么另一條也垂直于這個(gè)平面,所以正確;如果兩個(gè)平面與同一條直線垂直,則這兩個(gè)平面平行,所以
正確;
如果一個(gè)平面經(jīng)過了另一個(gè)平面的一條垂線,則這兩個(gè)平面平行,所以也正確;
只有選項(xiàng)錯(cuò)誤.答案:
.
7、解析:由題意,得,答案:
.
8、解析:的圖象先向左平移
,橫坐標(biāo)變?yōu)樵瓉?lái)的
倍
.答案:
.
二、填空題:
l 題號(hào)
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
9、解析:若,則
,解得
.
10、解析:由題意.
11、解析:
12、解析:令,則
,令
,則
,
令,則
,令
,則
,
令,則
,令
,則
,
…,所以.
13、解析::
;則圓心坐標(biāo)為
.
:
由點(diǎn)到直線的距離公式得圓心到直線的距離為
,所以要求的最短距離為
.
14、解析:由柯西不等式,答案:
.
15、解析:顯然與
為相似三角形,又
,所以
的面積等于9cm
.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說(shuō)明、證明過程和演算步驟.
16、解: (1), ………………………
2分
∴,…………………………………………………
4分
解得.………………………………………………………………… 6分
(2)由,得:
,
……………………… 8分
∴ …………………………………
10分
∴.……………………………………………………………
12分
17、解:(1)… 2分
則的最小正周期
, …………………………………4分
且當(dāng)時(shí)
單調(diào)遞增.
即為
的單調(diào)遞增區(qū)間(寫成開區(qū)間不扣分).……6分
(2)當(dāng)時(shí)
,當(dāng)
,即
時(shí)
.
所以. …………………………9分
為
的對(duì)稱軸.
…………………12分
18、解:
(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,
記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分
∵“兩球恰好顏色不同”共種可能,…………………………5分
∴.
……………………………………………………7分
解法二:“有放回摸取”可看作獨(dú)立重復(fù)實(shí)驗(yàn), …………………………2分
∵每次摸出一球得白球的概率為.………………………………5分
∴“有放回摸兩次,顏色不同”的概率為.
…………………7分
(2)設(shè)摸得白球的個(gè)數(shù)為,依題意得:
,
,
.
… 10分
∴,……………………………………12分
.……………………14分
19、(1)證明:
連結(jié),
與
交于點(diǎn)
,連結(jié)
.………………………1分
是菱形, ∴
是
的中點(diǎn). ………………………………………2分
點(diǎn)
為
的中點(diǎn), ∴
. …………………………………3分
平面
平面
, ∴
平面
. ……………… 6分
(2)解法一:
平面
,
平面
,∴
.
,∴
. …………………………… 7分
是菱形, ∴
.
,
∴平面
.
…………………………………………………………8分
作,垂足為
,連接
,則
,
所以為二面角
的平面角. ………………………………… 10分
,∴
,
.
在Rt△中,
=
,……………………………
12分
∴.…………………………… 13分
∴二面角的正切值是
. ………………………… 14分
解法二:如圖,以點(diǎn)為坐標(biāo)原點(diǎn),線段
的垂直平分線所在直線為
軸,
所在直線為
軸,
所在直線為
軸,建立空間直角坐標(biāo)系,令
,……………2分
則,
,
.
∴
. ……………4分
設(shè)平面的一個(gè)法向量為
,
由,得
,
令,則
,∴
. …………………7分
平面
,
平面
,
∴. ………………………………… 8分
,∴
.
是菱形,∴
.
,∴
平面
.…………………………… 9分
∴是平面
的一個(gè)法向量,
.…………………
10分
∴,
∴, …………………… 12分
∴.……………………………………
13分
∴二面角的正切值是
. ……………………… 14分
20、解:圓的方程為
,則其直徑長(zhǎng)
,圓心為
,設(shè)
的方程為
,即
,代入拋物線方程得:
,設(shè)
,
有
, ………………………………2分
則. ……………………4分
故 …6分
, ………… 7分
因此.
………………………………… 8分
據(jù)等差,, …………… 10分
所以,即
,
,…………… 12分
即:方程為
或
. …………………14分
21、解:
(1)因?yàn)?sub>,
…………………………2分
所以,滿足條件
. …………………3分
又因?yàn)楫?dāng)時(shí),
,所以方程
有實(shí)數(shù)根
.
所以函數(shù)是集合M中的元素. …………………………4分
(2)假設(shè)方程存在兩個(gè)實(shí)數(shù)根
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com