亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    2006年普通高等學(xué)校招生全國(guó)統(tǒng)一考試

    數(shù)學(xué)(理科)浙江卷

    本試題卷第Ⅰ卷和第Ⅱ卷兩部分。全卷共4頁(yè),第Ⅰ卷和第Ⅱ卷,第Ⅰ卷1至2頁(yè),第Ⅱ卷3至4頁(yè) 滿分150分,考試時(shí)間120鐘

    請(qǐng)考生按規(guī)定用筆將所有試題的答案涂、寫(xiě)在答題紙上。

    第Ⅰ卷(共 50 分)

    注意事項(xiàng):

    1.       答第 1 卷前,考生務(wù)必將自己的姓名,準(zhǔn)考證號(hào)用黑色字跡的簽字筆或鋼筆填寫(xiě)在答題紙上。

    2.  每小題選出正確答案后,用2B鉛筆把答題紙上對(duì)應(yīng)題目的答案標(biāo)號(hào)填黑.

    叁考正式:

    如果事件 A , B 互斥,那么

    P( A+ B ) = P( A)+ P( B)                     S=

    P( A+ B)= P( A). P( B)                      其中 R 表示球的半徑

    如果事件A在一次試驗(yàn)中發(fā)生的概念是p  球的體積公式V=

    那么n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生     其中R表示球的半徑

    k次的概率:  

    一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。

    1.       用黑色字跡的簽字筆或鋼筆將答案寫(xiě)在答題紙上,不能答在試題卷上。

    試題詳情

    2.       在答題紙上作圖,可先使用2B鉛筆,確定后必須使用黑色字跡的簽字筆或鋼筆描黑。

    (11)設(shè)S為等差數(shù)列a,的前n項(xiàng)和,若S-10, S=-5,則公差為   (用數(shù)字作答).

    (12)對(duì)a,bR,記max|a,b|=函數(shù)fx)=max||x+1|,|x-2||(xR)的最小值是   .

    (13)設(shè)向量a,b,c滿足a+b+c=0,(a-b)⊥c,a⊥b,若|a|=1,則|a|+|c(diǎn)|的值是   

    (14)正四面體ABCD的棱長(zhǎng)為1,棱AB∥平面α,則正四面體上的所有點(diǎn)在平面α內(nèi)的射影構(gòu)成的圖形面積的取值范圍是     .

    (15)如圖,函數(shù)y=2sin(πxφ),x∈R,(其中0≤φ≤)的圖象與y軸交于點(diǎn)(0,1).

     

    (Ⅰ)求φ的值;

    (Ⅱ)設(shè)P是圖象上的最高點(diǎn),M、N是圖象與x軸的交點(diǎn),求

    (16)設(shè)f(x)=3ax,f(0)>0,f(1)>0,求證:

    (Ⅰ)a>0且-2<<-1;

    (Ⅱ)方程f(x)=0在(0,1)內(nèi)有兩個(gè)實(shí)根.

    (17)如圖,在四棱錐P-ABCD中,底面為直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,且PA=AD=AB=2BC,M、N分別為PC、PB的中點(diǎn).

    (Ⅰ)求證:PB⊥DM;

    (Ⅱ)求CD與平面ADMN所成的角

    (18)甲、乙兩袋裝有大小相同的紅球和白球,甲袋裝有2個(gè)紅球,2個(gè)白球;乙袋裝有2個(gè)紅球,n個(gè)白球.兩甲,乙兩袋中各任取2個(gè)球.

    (Ⅰ)若n=3,求取到的4個(gè)球全是紅球的概率;

    (Ⅱ)若取到的4個(gè)球中至少有2個(gè)紅球的概率為,求n.

    (19)如圖,橢圓=1(a>b>0)與過(guò)點(diǎn)A(2,0)B(0,1)的直線有且只有一個(gè)公共點(diǎn)T,

    且橢圓的離心率e=.

    (Ⅰ)求橢圓方程;

    (Ⅱ)設(shè)F、F分別為橢圓的左、右焦點(diǎn),M為線段AF的中點(diǎn),求證:∠ATM=∠AFT.

    (20)已知函數(shù)f(x)=x+ x,數(shù)列|x|(x>0)的第一項(xiàng)x=1,以后各項(xiàng)按如下方式取定:曲線x=f(x)在處的切線與經(jīng)過(guò)(0,0)和(x,f (x))兩點(diǎn)的直線平行(如圖)

    .

    求證:當(dāng)n時(shí),

    (Ⅰ)x 

    (Ⅱ)

     

     

     

    試題詳情

    一、選擇題:本題考查基本知識(shí)和基本運(yùn)算。每小題5分,滿分50分。

    (1)A   (2)C          (3)A          (4)B          (5)C          (6)C

    (7)A   (8)D          (9)B          (10)D

    二、填空題:本題考查基本知識(shí)和基本運(yùn)算。每小題4分,滿分16分。

    (11)-1        (12)              (13)4     (14)

     

    (1)   設(shè)集合≤x≤2},B={x|0≤x≤4},則A∩B=A

    (A)[0,2]           (B)[1,2]            (C)[0,4]           (D)[1,4]

    【考點(diǎn)分析】本題考查集合的運(yùn)算,基礎(chǔ)題。

    解析:,故選擇A。

    【名師點(diǎn)拔】集合是一個(gè)重要的數(shù)學(xué)語(yǔ)言,注意數(shù)形結(jié)合。

     

    (2)   已知C

    (A)           (B)           (C)              (D)

    【考點(diǎn)分析】本題考查復(fù)數(shù)的運(yùn)算及性質(zhì),基礎(chǔ)題。

    解析:,由、是實(shí)數(shù),得

    ∴,故選擇C。

    【名師點(diǎn)拔】一個(gè)復(fù)數(shù)為實(shí)數(shù)的充要條件是虛部為0。

    (3)已知,則A

    (A)1<n<m            (B) 1<m<n             (C)m<n<1       (D) n<m<1

    【考點(diǎn)分析】本題考查對(duì)數(shù)函數(shù)的性質(zhì),基礎(chǔ)題。

    解析:由知函數(shù)為減函數(shù),由得

    ,故選擇A。

    (4)在平面直角坐標(biāo)系中,不等式組表示的平面區(qū)域的面積是B

    【考點(diǎn)分析】本題考查簡(jiǎn)單的線性規(guī)劃的可行域、三角形的面積。

    解析:由題知可行域?yàn)椋?/p>

     ,故選擇B。

    【名師點(diǎn)拔】

     

    (5)若雙曲線上的點(diǎn)到左準(zhǔn)線的距離是到左焦點(diǎn)距離的,則C

    (A)            (B)           (C)             (D)

    【考點(diǎn)分析】本題考查雙曲線的第二定義,基礎(chǔ)題。

    解析:由題離心率,由雙曲線的第二定義知

    ,故選擇C。

    【名師點(diǎn)拔】本題在條件中有意識(shí)的將雙曲線第二定義“到左焦點(diǎn)距離與到左準(zhǔn)線的距離是定值”中比的前后項(xiàng)顛倒為“到左準(zhǔn)線的距離是到左焦點(diǎn)距離的”,如本題改為填空題,沒(méi)有了選擇支的提示,則難度加大。

     

    (6)函數(shù)的值域是C

    (A)[-,]  (B)[-,]   (C)[]  (D)[]

    【考點(diǎn)分析】本題考查三角函數(shù)的性質(zhì),基礎(chǔ)題。

    解析:,故選擇C。

    【名師點(diǎn)拔】本題是求有關(guān)三角函數(shù)的值域的一種通法,即將函數(shù)化為

    或的模式。

    (7)“”是“”的A

    (A)充分而不必要條件                 (B)必要而不充分條件

    (C)充分必要條件                    (D)既不允分也不必要條件

    【考點(diǎn)分析】本題考查平方不等式和充要條件,基礎(chǔ)題。

    解析:由能推出;但反之不然,因此平方不等式的條件是。

    【名師點(diǎn)拔】

    (8)若多項(xiàng)式D

    (A)9            (B)10           (C)-9             (D)-10

    【考點(diǎn)分析】本題考查二項(xiàng)式展開(kāi)式的特殊值法,基礎(chǔ)題。

    解析:令,得,

    令,得

    (9)如圖,O是半徑為l的球心,點(diǎn)A、B、C在球面上,OA、OB、OC兩兩垂直,E、F分別是大圓弧AB與AC的中點(diǎn),則點(diǎn)E、F在該球面上的球面距離是B

    (A)      (B)    (C)         (D)

    【考點(diǎn)分析】本題考查球面距的計(jì)算,基礎(chǔ)題。

    解析:如圖,

    ∴,∴點(diǎn)E、F在該球面上的球面距離為

    故選擇B。

    【名師點(diǎn)拔】?jī)牲c(diǎn)球面距的計(jì)算是立體幾何的一個(gè)難點(diǎn),其通法的關(guān)鍵是求出兩點(diǎn)的球面角,而求球面角又需用余弦定理。

     

    (10)函數(shù)滿足,則這樣的函數(shù)個(gè)數(shù)共有D

    (A)1個(gè)            (B)4個(gè)           (C)8個(gè)             (D)10個(gè)

    【考點(diǎn)分析】本題考查抽象函數(shù)的定義,中檔題。

    解析:即

    (11)設(shè)為等差數(shù)列的前項(xiàng)和,若,則公差為 -1  (用數(shù)字作答)。

    【考點(diǎn)分析】本題考查等差數(shù)列的前項(xiàng)和,基礎(chǔ)題。

    解析:設(shè)首項(xiàng)為,公差為,由題得

    【名師點(diǎn)拔】數(shù)學(xué)問(wèn)題解決的本質(zhì)是,你已知什么?從已知出發(fā)又能得出什么?完成了這些,也許水到渠成了。本題非常基礎(chǔ),等差數(shù)列的前項(xiàng)和公式的運(yùn)用自然而然的就得出結(jié)論。

    (12)對(duì),記函數(shù)的最小值是  .

    【考點(diǎn)分析】本題考查新定義函數(shù)的理解、解絕對(duì)值不等式,中檔題。

    ,其圖象如右,

    則。

    【名師點(diǎn)拔】數(shù)學(xué)中考查創(chuàng)新思維,要求必須要有良好的數(shù)學(xué)素養(yǎng)。

    (13)設(shè)向量滿足 b,若,則的值是  4 。

    【考點(diǎn)分析】本題考查向量的代數(shù)運(yùn)算,基礎(chǔ)題。

    解析:

    【名師點(diǎn)拔】向量的模轉(zhuǎn)化為向量的平方,這是一個(gè)重要的向量解決思想。

     

    (14)正四面體ABCD的棱長(zhǎng)為1,棱AB∥平面α,則正四面體上的所有點(diǎn)在平面α內(nèi)的射影構(gòu)成的圖形面積的取值范圍是   .

     

    三、解答題

    (15)本題主要考查三角函數(shù)的圖像,已知三角函數(shù)求角,向量夾角的計(jì)算等基礎(chǔ)知識(shí)和基本的運(yùn)算能力。滿分14分。

    解:(I)因?yàn)楹瘮?shù)圖像過(guò)點(diǎn),

    所以即

    因?yàn)椋?

    (II)由函數(shù)及其圖像,得

    所以從而

                  ,

    故.

    (16)本題主要考查二次函數(shù)的基本性質(zhì)與不等式的應(yīng)用等基礎(chǔ)知識(shí)。滿分14分。

    證明:(I)因?yàn)椋?/p>

    所以.

    由條件,消去,得

    ;

    由條件,消去,得

    ,.

    故.

    (II)拋物線的頂點(diǎn)坐標(biāo)為,

    在的兩邊乘以,得

    .

    又因?yàn)?/p>

    所以方程在區(qū)間與內(nèi)分別有一實(shí)根。

    故方程在內(nèi)有兩個(gè)實(shí)根.

    (17)本題主要考查空間線線、線面關(guān)系、空間向量的概念與運(yùn)算等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力。滿分14分。

    解:方法一:

    (I)因?yàn)槭堑闹悬c(diǎn),,

    所以.

    因?yàn)槠矫,所?/p>

    ,

    從而平面.

    因?yàn)槠矫妫?/p>

    所以.

    (II)取的中點(diǎn),連結(jié)、,

    則,

    所以與平面所成的角和與平面所成的角相等.

    因?yàn)槠矫妫?/p>

    所以是與平面所成的角.

    在中,

    .

    故與平面所成的角是.

    方法二:

    如圖,以為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系,設(shè),則

    .

    (I)  因?yàn)?/p>

    ,

    所以

    (II)  因?yàn)?/p>

    所以,

    又因?yàn)椋?/p>

    所以平面

    因此的余角即是與平面所成的角.

    因?yàn)?/p>

    所以與平面所成的角為.

    (18)本題主要考察排列組合、概率等基本知識(shí),同時(shí)考察邏輯思維能力和數(shù)學(xué)應(yīng)用能力。滿分14分。

    解:(I)記“取到的4個(gè)球全是紅球”為事件.

    (II)記“取到的4個(gè)球至多有1個(gè)紅球”為事件,“取到的4個(gè)球只有1個(gè)紅球”為事件,“取到的4個(gè)球全是白球”為事件.

    由題意,得

    所以

    ,

    化簡(jiǎn),得

    解得,或(舍去),

    故  .

    (19)本題主要考查直線與橢圓的位置關(guān)系、橢圓的幾何性質(zhì),同時(shí)考察解析幾何的基本思想方法和綜合解題能力。滿分14分。

    解:(I)過(guò)點(diǎn)、的直線方程為

    因?yàn)橛深}意得                  有惟一解,

    即有惟一解,

    所以

       (),

    故 

    又因?yàn)?即 

    所以 

    從而得 

    故所求的橢圓方程為    

    (II)由(I)得 

    從而

                     由

    解得

    所以

    因?yàn)?/p>

    又得

    因此

    (20)本題主要考查函數(shù)的導(dǎo)數(shù)、數(shù)列、不等式等基礎(chǔ)知識(shí),以及不等式的證明,同時(shí)考查邏輯推理能力。滿分14分。

    證明:(I)因?yàn)?/p>

    所以曲線在處的切線斜率

    因?yàn)檫^(guò)和兩點(diǎn)的直線斜率是

    所以.

    (II)因?yàn)楹瘮?shù)當(dāng)時(shí)單調(diào)遞增,

    ,

    所以,即

    因此

    又因?yàn)?/p>

    因?yàn)?/p>

    所以

    因此

     


    同步練習(xí)冊(cè)答案