亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    2006年普通高等學(xué)校招生全國統(tǒng)一考試(江西卷)

    理科數(shù)學(xué)

     

    本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至2頁。第Ⅱ卷3至4頁。全卷滿分150分,考試時間120分鐘。

    考生注意事項:

    1.答題前,務(wù)必在試題卷、答題卡規(guī)定的地方填寫自己的座位號、姓名,并認(rèn)真核對答題卡上所粘貼的條形碼中“座位號、姓名、科類”與本人座位號、姓名、科類是否一致。

    2.答第Ⅰ卷時,每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑。如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號。

    3.答第Ⅱ卷時,必須用0.5毫米墨水簽字筆在答題卡上書寫。在試題卷上作答無效。

    4.考試結(jié)束,監(jiān)考人員將試題卷和答題卡一并收回。

    參考公式:

    如果時間A、B互斥,那么

    如果時間A、B相互獨立,那么

    如果事件A在一次試驗中發(fā)生的概率是P,那么n次獨立重復(fù)試驗中恰好發(fā)生k次的概率

    球的表面積公式,其中R表示球的半徑

    球的體積公式,其中R表示球的半徑

     

    第Ⅰ卷(選擇題  共60分)

    一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的。

    1、已知集合M={x|},N={y|y=3x2+1,xÎR},則MÇN=(   )

    A.Æ   B. {x|x³1}   C.{x|x>1}  D. {x| x³1或x<0}

    試題詳情

    2、已知復(fù)數(shù)z滿足(+3i)z=3i,則z=(   )

    A.  B.   C.   D.

    試題詳情

    3、若a>0,b>0,則不等式-b<<a等價于(    )

    A.<x<0或0<x<   B.-<x<   C.x<-或x>   D.x<或x>

    試題詳情

    4、設(shè)O為坐標(biāo)原點,F(xiàn)為拋物線y2=4x的焦點,A是拋物線上一點,若=-4

    則點A的坐標(biāo)是(   )

    A.(2,±2)  B. (1,±2)  C.(1,2)D.(2,2)

    試題詳情

    5、對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)³0,則必有(   )

    A.  f(0)+f(2)<2f(1)  B. f(0)+f(2)£2f(1)

    B.  f(0)+f(2)³2f(1)  C. f(0)+f(2)>2f(1)

    試題詳情

    6、若不等式x2+ax+1³0對于一切xÎ(0,〕成立,則a的取值范圍是(    )

    A.0  B. ?2   C.-  D.-3

    試題詳情

    7、已知等差數(shù)列{an}的前n項和為Sn,若,且A、B、C三點共線(該直線不過原點O),則S200=(   )

    A.100   B. 101  C.200  D.201

    試題詳情

    8、在(x-)2006 的二項展開式中,含x的奇次冪的項之和為S,當(dāng)x=時,S等于(  )

    A.23008   B.-23008   C.23009   D.-23009

    試題詳情

    9、P是雙曲線的右支上一點,M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點,則|PM|-|PN|的最大值為(   )

    A. 6  B.7   C.8   D.9

    試題詳情

    10、將7個人(含甲、乙)分成三個組,一組3人,另兩組2 人,不同的分組數(shù)為a,甲、乙分到同一組的概率為p,則a、p的值分別為(   )

    A.  a=105  p=  B.a=105  p=  C.a=210  p=  D.a=210  p=

    試題詳情

    11、如圖,在四面體ABCD中,截面AEF經(jīng)過四面體的內(nèi)切球(與四個面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設(shè)四棱錐A-BEFD與三棱錐A-EFC的表面積分別是S1,S2,則必有(   )

    A.     S1<S2

    B.     S1>S2

    C.     S1=S2

    D.     S1,S2的大小關(guān)系不能確定

    試題詳情

    12、某地一年的氣溫Q(t)(單位:ºc)與時間t(月份)之間的關(guān)系如圖(1)所示,已知該年的平均氣溫為10ºc,令G(t)表示時間段〔0,t〕的平均氣溫,G(t)與t之間的函數(shù)關(guān)系用下列圖象表示,則正確的應(yīng)該是(    )

     

     

     

     

     

     

    試題詳情

     

    試題詳情

      

     

     

     

    試題詳情

      

     

     

     

     

     

     

     

     

     

     

    理科數(shù)學(xué)

    第Ⅱ卷(非選擇題  共90分)

    注意事項:

    試題詳情

    請用0.5毫米黑色墨水簽字筆在答題卡上書寫作答,在試題卷上書寫作答無效。

    試題詳情

    二、填空題:本大題共4小題,每小題4分,共16分,把答案填寫在答題卡的相應(yīng)位置。

    13、數(shù)列{}的前n項和為Sn,則Sn=______________

    試題詳情

    14、設(shè)f(x)=log3(x+6)的反函數(shù)為f-1(x),若〔f-1(m)+6〕〔f-1(n)+6〕=27

    則f(m+n)=___________________

    試題詳情

    15、如圖,在直三棱柱ABC-A1B1C1中,底面為直角三角形,ÐACB=90°,AC=6,BC=CC1=,P是BC1上一動點,則CP+PA1的最小值是___________

    試題詳情

    16、已知圓M:(x+cosq)2+(y-sinq)2=1,

    直線l:y=kx,下面四個命題:

    (A)     對任意實數(shù)k與q,直線l和圓M相切;

    (B)      對任意實數(shù)k與q,直線l和圓M有公共點;

    (C)      對任意實數(shù)q,必存在實數(shù)k,使得直線l

    和圓M相切

    (D)對任意實數(shù)k,必存在實數(shù)q,使得直線l

    和圓M相切

    其中真命題的代號是______________(寫出所有真命題的代號)

     

    試題詳情

    三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟

    17、(本小題滿分12分)

    已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時都取得極值

    (1)       求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間

    (2)       若對xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍。

     

     

     

     

     

     

     

     

     

     

     

     

     

    試題詳情

    18、(本小題滿分12分)

    某商場舉行抽獎促銷活動,抽獎規(guī)則是:從裝有9個白球,1個紅球的箱子中每次隨機地摸出一個球,記下顏色后放回,摸出一個紅球可獲得獎金10元;摸出2個紅球可獲得獎金50元,現(xiàn)有甲,乙兩位顧客,規(guī)定:甲摸一次,乙摸兩次,令x表示甲,乙摸球后獲得的獎金總額。求:

    (1)x的分布列   (2)x的的數(shù)學(xué)期望

     

     

     

     

     

     

     

     

     

     

     

    試題詳情

    19、(本小題滿分12分)

    如圖,已知△ABC是邊長為1的正三角形,M、N分別是

    邊AB、AC上的點,線段MN經(jīng)過△ABC的中心G,

    設(shè)ÐMGA=a()

    (1)       試將△AGM、△AGN的面積(分別記為S1與S2

    表示為a的函數(shù)

    (2)       求y=的最大值與最小值

     

     

     

     

     

     

     

     

     

     

     

    試題詳情

    20、(本小題滿分12分)

    如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD是全等的直角三角形,AD是公共的斜邊,且AD=,BD=CD=1,另一個側(cè)面是正三角形

    (1)       求證:AD^BC

    (2)       求二面角B-AC-D的大小

    (3)       在直線AC上是否存在一點E,使ED與面BCD成30°角?若存在,確定E的位置;若不存在,說明理由。

     

     

     

     

     

     

     

     

     

     

     

     

    試題詳情

    21、(本大題滿分12分)

    如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉(zhuǎn)動,并且交橢圓于A、B兩點,P是線段AB的中點

    (1)       求點P的軌跡H的方程

    (2)       在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點距橢圓的右準(zhǔn)線l最遠(yuǎn),此時,設(shè)l與x軸交點為D,當(dāng)直線m繞點F轉(zhuǎn)動到什么位置時,三角形ABD的面積最大?

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    試題詳情

    22、(本大題滿分14分)

    已知數(shù)列{an}滿足:a1=,且an

    (1)       求數(shù)列{an}的通項公式;

    (2)       證明:對于一切正整數(shù)n,不等式a1?a2?……an<2?n!

     

     

     

     

     

     

     

     

     

     

    2006年普通高等學(xué)校招生全國統(tǒng)一考試(江西卷)

    理科數(shù)學(xué)

     

    本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分。第Ⅰ卷1至2頁。第Ⅱ卷3至4頁。全卷滿分150分,考試時間120分鐘。

    考生注意事項:

    試題詳情

    1.答題前,務(wù)必在試題卷、答題卡規(guī)定的地方填寫自己的座位號、姓名,并認(rèn)真核對答題卡上所粘貼的條形碼中“座位號、姓名、科類”與本人座位號、姓名、科類是否一致。

    試題詳情

    2.答第Ⅰ卷時,每小題選出答案后,用2B鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑。如需改動,用橡皮擦干凈后,再選涂其他答案標(biāo)號。

    試題詳情

    3.答第Ⅱ卷時,必須用0.5毫米墨水簽字筆在答題卡上書寫。在試題卷上作答無效。

    試題詳情

    4.考試結(jié)束,監(jiān)考人員將試題卷和答題卡一并收回。

    參考公式:

    如果時間A、B互斥,那么

    如果時間A、B相互獨立,那么

    如果事件A在一次試驗中發(fā)生的概率是P,那么n次獨立重復(fù)試驗中恰好發(fā)生k次的概率

    球的表面積公式,其中R表示球的半徑

    球的體積公式,其中R表示球的半徑

     

    第Ⅰ卷(選擇題  共60分)

    試題詳情

    一、選擇題:本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的。

    1、已知集合M={x|},N={y|y=3x2+1,xÎR},則MÇN=( C  )

    A.Æ   B. {x|x³1}   C.{x|x>1}  D. {x| x³1或x<0}

    解:M={x|x>1或x£0},N={y|y³1}故選C

    試題詳情

    2、已知復(fù)數(shù)z滿足(+3i)z=3i,則z=( D  )

    A.  B.   C.   D.

    解:故選D

     

    試題詳情

    3、若a>0,b>0,則不等式-b<<a等價于( D   )

    A.<x<0或0<x<   B.-<x<   C.x<-或x>   D.x<或x>

    解:

     

     

     

     

     

     

     

    故選D

    試題詳情

    4、設(shè)O為坐標(biāo)原點,F(xiàn)為拋物線y2=4x的焦點,A是拋物線上一點,若=-4

    則點A的坐標(biāo)是(B   )

    A.(2,±2)  B. (1,±2)  C.(1,2)D.(2,2)

    解:F(1,0)設(shè)A(,y0)則=( ,y0),=(1-,-y0),由

    ? =-4Þy0=±2,故選B

    試題詳情

    5、對于R上可導(dǎo)的任意函數(shù)f(x),若滿足(x-1)³0,則必有( C  )

    C.  f(0)+f(2)<2f(1)  B. f(0)+f(2)£2f(1)

    C.  f(0)+f(2)³2f(1)  D. f(0)+f(2)>2f(1)

    解:依題意,當(dāng)x³1時,f¢(x)³0,函數(shù)f(x)在(1,+¥)上是增函數(shù);當(dāng)x<1時,f¢(x)£0,f(x)在(-¥,1)上是減函數(shù),故f(x)當(dāng)x=1時取得最小值,即有

    f(0)³f(1),f(2)³f(1),故選C

    試題詳情

    6、若不等式x2+ax+1³0對于一切xÎ(0,)成立,則a的取值范圍是( C   )

    A.0  B. ?2   C.-  D.-3

    解:設(shè)f(x)=x2+ax+1,則對稱軸為x=

    若³,即a£-1時,則f(x)在〔0,〕上是減函數(shù),應(yīng)有f()³0Þ

    -£x£-1

    若£0,即a³0時,則f(x)在〔0,〕上是增函數(shù),應(yīng)有f(0)=1>0恒成立,故a³0

    若0££,即-1£a£0,則應(yīng)有f()=恒成立,故-1£a£0

    綜上,有-£a故選C

    試題詳情

    7、已知等差數(shù)列{an}的前n項和為Sn,若,且A、B、C三點共線(該直線不過原點O),則S200=( A  )

    A.100   B. 101  C.200  D.201

    解:依題意,a1+a200=1,故選A

    試題詳情

    8、在(x-)2006 的二項展開式中,含x的奇次冪的項之和為S,當(dāng)x=時,S等于(B  )

    A.23008   B.-23008   C.23009   D.-23009

    解:設(shè)(x-)2006=a0x2006+a1x2005+…+a2005x+a2006

    則當(dāng)x=時,有a0()2006+a1()2005+…+a2005()+a2006=0 (1)

    當(dāng)x=-時,有a0()2006-a1()2005+…-a2005()+a2006=23009 (2)

    (1)-(2)有a1()2005+…+a2005()=-23009¸2=-23008

    故選B

    試題詳情

    9、P是雙曲線的右支上一點,M、N分別是圓(x+5)2+y2=4和(x-5)2+y2=1上的點,則|PM|-|PN|的最大值為( D  )

    A. 6  B.7   C.8   D.9

    解:設(shè)雙曲線的兩個焦點分別是F1(-5,0)與F2(5,0),則這兩點正好是兩圓的圓心,當(dāng)且僅當(dāng)點P與M、F1三點共線以及P與N、F2三點共線時所求的值最大,此時

    |PM|-|PN|=(|PF1|-2)-(|PF2|-1)=10-1=9故選B

    試題詳情

    10、將7個人(含甲、乙)分成三個組,一組3人,另兩組2 人,不同的分組數(shù)為a,甲、乙分到同一組的概率為p,則a、p的值分別為(  A )

    B.  a=105  p=  B.a=105  p=  C.a=210  p=  D.a=210  p=

    解:a==105

    甲、乙分在同一組的方法種數(shù)有

    (1)       若甲、乙分在3人組,有=15種

    (2)       若甲、乙分在2人組,有=10種,故共有25種,所以P=

    故選A

     

    試題詳情

    11、如圖,在四面體ABCD中,截面AEF經(jīng)過四面體的內(nèi)切球(與四個面都相切的球)球心O,且與BC,DC分別截于E、F,如果截面將四面體分成體積相等的兩部分,設(shè)四棱錐A-BEFD與三棱錐A-EFC的表面積分別是S1,S2,則必有(   )

    A.     S1<S2

    B.     S1>S2

    C.     S1=S2

    D.     S1,S2的大小關(guān)系不能確定

    解:連OA、OB、OC、OD

    則VA-BEFD=VO-ABD+VO-ABE+VO-BEFD

    VA-EFC=VO-ADC+VO-AEC+VO-EFC又VA-BEFD=VA-EFC而每個三棱錐的高都是原四面體的內(nèi)切球的半徑,故SABD+SABE+SBEFD=SADC+SAEC+SEFC又面AEF公共,故選C

    試題詳情

    12、某地一年的氣溫Q(t)(單位:ºc)與時間t(月份)之間的關(guān)系如圖(1)所示,已知該年的平均氣溫為10ºc,令G(t)表示時間段〔0,t〕的平均氣溫,G(t)與t之間的函數(shù)關(guān)系用下列圖象表示,則正確的應(yīng)該是(  A  )

     

     

     

     

     

     

    試題詳情

     

    試題詳情

      

     

     

     

    試題詳情

      

     

     

     

     

     

     

     

     

     

     

     

     

    解:結(jié)合平均數(shù)的定義用排除法求解

     

    理科數(shù)學(xué)

    第Ⅱ卷(非選擇題  共90分)

    注意事項:

    試題詳情

    請用0.5毫米黑色墨水簽字筆在答題卡上書寫作答,在試題卷上書寫作答無效。

    試題詳情

    二、填空題:本大題共4小題,每小題4分,共16分,把答案填寫在答題卡的相應(yīng)位置。

    13、數(shù)列{}的前n項和為Sn,則Sn

    試題詳情

    13、解: 

     

    試題詳情

    14、設(shè)f(x)=log3(x+6)的反函數(shù)為f-1(x),若〔f-1(m)+6〕〔f-1(n)+6〕=27

    則f(m+n)=___________________

    解:f-1(x)=3x-6故〔f-1(m)+6〕?〔f-1(x)+6〕=3m?3n=3m +n=27

    \m+n=3\f(m+n)=log3(3+6)=2

     

    試題詳情

    15、如圖,在直三棱柱ABC-A1B1C1中,底面為直角三角形,ÐACB=90°,AC=6,BC=CC1=,P是BC1上一動點,則CP+PA1的最小值是___________

    解:連A1B,沿BC1將△CBC1展開與△A1BC1在同一個平面內(nèi),如圖所示,

    試題詳情

    連A1C,則A1C的長度就是所求的最小值。

    通過計算可得ÐA1C1C=90°又ÐBC1C=45°

    \ÐA1C1C=135° 由余弦定理可求得A1C=

     

    試題詳情

    16、已知圓M:(x+cosq)2+(y-sinq)2=1,

    直線l:y=kx,下面四個命題:

    (D)     對任意實數(shù)k與q,直線l和圓M相切;

    (E)      對任意實數(shù)k與q,直線l和圓M有公共點;

    (F)      對任意實數(shù)q,必存在實數(shù)k,使得直線l

    和圓M相切

    (D)對任意實數(shù)k,必存在實數(shù)q,使得直線l

    和圓M相切

    其中真命題的代號是______________(寫出所有真命題的代號)

     

    解:圓心坐標(biāo)為(-cosq,sinq)d=

    故選(B)(D)

     

     

    試題詳情

    三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟

    17、(本小題滿分12分)

    已知函數(shù)f(x)=x3+ax2+bx+c在x=-與x=1時都取得極值

    (3)       求a、b的值與函數(shù)f(x)的單調(diào)區(qū)間

    (4)       若對xÎ〔-1,2〕,不等式f(x)<c2恒成立,求c的取值范圍。

    試題詳情

    17、解:(1)f(xx3+ax2+bx+c,f¢(x3x2+2ax+b

    f¢,f¢(1=3+2a+b0

    a,b2

    f¢(x=3x2-x-2=(3x+2)(x-1),函數(shù)f(x的單調(diào)區(qū)間如下表:

    x

    (-¥,-)

    (-,1)

    1

    (1,+¥)

    f¢(x

    0

    0

    f(x

    ­

    極大值

    ¯

    極小值

    ­

    所以函數(shù)f(x)的遞增區(qū)間是(-¥,-)與(1,+¥)

    遞減區(qū)間是(-,1)

    (2)f(x=x3-x2-2x+c,xÎ〔-1,2〕,當(dāng)x=-時,f(x=+c

    為極大值,而f(2=2+c,則f(2=2+c為最大值。

    要使f(x<c2(xÎ〔-1,2〕)恒成立,只需c2>f(2=2+c

    解得c<-1或c>2

    試題詳情

    18、(本小題滿分12分)

    某商場舉行抽獎促銷活動,抽獎規(guī)則是:從裝有9個白球,1個紅球的箱子中每次隨機地摸出一個球,記下顏色后放回,摸出一個紅球可獲得獎金10元;摸出2個紅球可獲得獎金50元,現(xiàn)有甲,乙兩位顧客,規(guī)定:甲摸一次,乙摸兩次,令x表示甲,乙摸球后獲得的獎金總額。求:

    (1)x的分布列   (2)x的的數(shù)學(xué)期望

    試題詳情

    18、解:(1)x的所有可能的取值為0,10,20,50,60

    分布列為

    x

    0

    10

    20

    50

    60

    P

    試題詳情

    (2)Ex=3.3

    試題詳情

    19、(本小題滿分12分)

    如圖,已知△ABC是邊長為1的正三角形,M、N分別是

    邊AB、AC上的點,線段MN經(jīng)過△ABC的中心G,

    設(shè)ÐMGA=a()

    (3)       試將△AGM、△AGN的面積(分別記為S1與S2

    表示為a的函數(shù)

    (4)       求y=的最大值與最小值

    試題詳情

    19、解:

    (1)       因為G是邊長為1的正三角形ABC的中心,

    所以   AG=,ÐMAG=,

    由正弦定理

    則S1=GM?GA?sina=

    同理可求得S2

    (2)       y==

    =72(3+cot2a)因為,所以當(dāng)a=或a=時,y取得最大值ymax=240

    當(dāng)a=時,y取得最小值ymin=216

    試題詳情

    20、(本小題滿分12分)

    如圖,在三棱錐A-BCD中,側(cè)面ABD、ACD

    是全等的直角三角形,AD是公共的斜邊,

    且AD=,BD=CD=1,另一個側(cè)面是正三角形

    (4)       求證:AD^BC

    (5)       求二面角B-AC-D的大小

    (6)       在直線AC上是否存在一點E,使ED與面BCD

    成30°角?若存在,確定E的位置;若不存在,說明理由。

    試題詳情

    20、解法一:

    (1)       方法一:作AH^面BCD于H,連DH。

    AB^BDÞHB^BD,又AD=,BD=1

    \AB==BC=AC  \BD^DC

    又BD=CD,則BHCD是正方形,則DH^BC\AD^BC

    方法二:取BC的中點O,連AO、DO

    則有AO^BC,DO^BC,\BC^面AOD

    \BC^AD

    (2)       作BM^AC于M,作MN^AC交AD于N,則ÐBMN就是二面角B-AC-D的平面角,因為AB=AC=BC=\M是AC的中點,且MN¤¤CD,則BM=,MN=CD=,BN=AD=,由余弦定理可求得cosÐBMN=

    \ÐBMN=arccos

    (3)       設(shè)E是所求的點,作EF^CH于F,連FD。則EF¤¤AH,\EF^面BCD,ÐEDF就是ED與面BCD所成的角,則ÐEDF=30°。設(shè)EF=x,易得AH=HC=1,則CF=x,F(xiàn)D=,\tanÐEDF===解得x=,則CE=x=1

    故線段AC上存在E點,且CE=1時,ED與面BCD成30°角。

    解法二:此題也可用空間向量求解,解答略

    試題詳情

    21、(本大題滿分12分)

    如圖,橢圓Q:(a>b>0)的右焦點F(c,0),過點F的一動直線m繞點F轉(zhuǎn)動,并且交橢圓于A、B兩點,P是線段AB的中點

    (3)       求點P的軌跡H的方程

    (4)       在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),確定q的值,使原點距橢圓的右準(zhǔn)線l最遠(yuǎn),此時,設(shè)l與x軸交點為D,當(dāng)直線m繞點F轉(zhuǎn)動到什么位置時,三角形ABD的面積最大?

    試題詳情

    21、解:如圖,(1)設(shè)橢圓Q:(a>b>0)

    上的點A(x1,y1)、B(x2,y2),又設(shè)P點坐標(biāo)為P(x,y),則

    1°當(dāng)AB不垂直x軸時,x1¹x2,

    由(1)-(2)得

    b2(x1-x2)2x+a2(y1-y2)2y=0

         

    \b2x2+a2y2-b2cx=0…………(3)

    2°當(dāng)AB垂直于x軸時,點P即為點F,滿足方程(3)

    故所求點P的軌跡方程為:b2x2+a2y2-b2cx=0

    (2)因為,橢圓  Q右準(zhǔn)線l方程是x=,原點距l

    的距離為,由于c2=a2-b2,a2=1+cosq+sinq,b2=sinq(0<q£)

    則==2sin(+)

    當(dāng)q=時,上式達到最大值。此時a2=2,b2=1,c=1,D(2,0),|DF|=1

    設(shè)橢圓Q:上的點 A(x1,y1)、B(x2,y2),三角形ABD的面積

    S=|y1|+|y2|=|y1-y2|

    設(shè)直線m的方程為x=ky+1,代入中,得(2+k2)y2+2ky-1=0

    由韋達定理得y1+y2=,y1y2=,

    4S2=(y1-y22=(y1+y22-4 y1y2

    令t=k2+1³1,得4S2=,當(dāng)t=1,k=0時取等號。

    因此,當(dāng)直線m繞點F轉(zhuǎn)到垂直x軸位置時,三角形ABD的面積最大。

     

    試題詳情

    22、(本大題滿分14分)

    已知數(shù)列{an}滿足:a1=,且an

    (3)       求數(shù)列{an}的通項公式;

    (4)       證明:對于一切正整數(shù)n,不等式a1?a2?……an<2?n!

    試題詳情

    22、解:

    (1)       將條件變?yōu)椋?-=,因此{1-}為一個等比數(shù)列,其首項為

    1-=,公比,從而1-=,據(jù)此得an=(n³1)…………1°

    (2)       證:據(jù)1°得,a1?a2?…an

    為證a1?a2?……an<2?n!

    只要證nÎN*時有>…………2°

    顯然,左端每個因式都是正數(shù),先證明,對每個nÎN*,有

    ³1-()…………3°

    用數(shù)學(xué)歸納法證明3°式:

    (i)                    n=1時,3°式顯然成立,

    (ii)                  設(shè)n=k時,3°式成立,

    即³1-()

    則當(dāng)n=k+1時,

    ³〔1-()〕?()

    =1-()-+()

    ³1-(+)即當(dāng)n=k+1時,3°式也成立。

    故對一切nÎN*,3°式都成立。

    利用3°得,³1-()=1-

    =1->

    故2°式成立,從而結(jié)論成立。

     

     

     

    試題詳情


    同步練習(xí)冊答案