亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    21.已知雙曲線:的離心率為.過右焦點(diǎn)做漸近線:的平行線 交雙曲線與點(diǎn).若.(Ⅰ)求雙曲線的方程,(Ⅱ)若直線與雙曲線恒有兩個(gè)不同的交點(diǎn)和.且其中為原點(diǎn).求的范圍. 查看更多

     

    題目列表(包括答案和解析)

    (本小題滿分12分)

    已知斜率為1的直線1與雙曲線C:相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1.3)

    (Ⅰ)(Ⅰ)求C的離心率;

    (Ⅱ)(Ⅱ)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17證明:過A、B、D三點(diǎn)的圓與x軸相切。

    查看答案和解析>>

    (本小題滿分12分)

    已知斜率為1的直線1與雙曲線C:相交于B、D兩點(diǎn),且BD的中點(diǎn)為M(1.3)

    (Ⅰ)(Ⅰ)求C的離心率;

    (Ⅱ)(Ⅱ)設(shè)C的右頂點(diǎn)為A,右焦點(diǎn)為F,|DF|·|BF|=17證明:過A、B、D三點(diǎn)的圓與x軸相切。

    查看答案和解析>>

    (本小題滿分12分)已知命題p:方程表示焦點(diǎn)在y軸上的橢圓;

    命題q:雙曲線的離心率,若p、q有且只有一個(gè)為真,求m的取值范圍.

     

    查看答案和解析>>

     19(本小題滿分12分)

    P是以為焦點(diǎn)的雙曲線C:(a>0,b>0)上的一點(diǎn),已知=0,

    (1)試求雙曲線的離心率

    (2)過點(diǎn)P作直線分別與雙曲線兩漸近線相交于P1、P2兩點(diǎn),當(dāng),= 0,求雙曲線的方程.

    查看答案和解析>>

    (2010四川理數(shù))(20)(本小題滿分12分)

    已知定點(diǎn)A(-1,0),F(2,0),定直線lx,不在x軸上的動(dòng)點(diǎn)P與點(diǎn)F的距離是它到直線l的距離的2倍.設(shè)點(diǎn)P的軌跡為E,過點(diǎn)F的直線交EB、C兩點(diǎn),直線AB、AC分別交l于點(diǎn)MN

    (Ⅰ)求E的方程;

    (Ⅱ)試判斷以線段MN為直徑的圓是否過點(diǎn)F,并說明理由.【來源:全,品…中&高*考+網(wǎng)】

    本小題主要考察直線、軌跡方程、雙曲線等基礎(chǔ)知識(shí),考察平面機(jī)襲擊和的思想方法及推理運(yùn)算能力.

    查看答案和解析>>

    1.解析:,故選A。

    2.解析:∵

    ,

    故選B。

    3.解析:由,得,此時(shí),所以,,故選C。

    4.解析:顯然,若與共線,則與共線;若與共線,則,即,得,∴與共線,∴與共線是與共線的充要條件,故選C。

    5.解析:設(shè)公差為,由題意得,;,解得或,故選C。

    6.解析:∵雙曲線的右焦點(diǎn)到一條漸近線的距離等于焦距的,∴,又∵,∴,∴,∴雙曲線的離心率是。故選B.

    7.解析:∵、為正實(shí)數(shù),∴,∴;由均值不等式得恒成立,,故②不恒成立,又因?yàn)楹瘮?shù)在是增函數(shù),∴,故恒成立的不等式是①③④。故選C.

    8.解析:∵,∴在區(qū)間上恒成立,即在區(qū)間上恒成立,∴,故選D。

    9.解析:∵

    ,此函數(shù)的最小值為,故選C。

    10.解析:如圖,∵正三角形的邊長(zhǎng)為,∴,∴,又∵,∴,故選D。

    11.解析:∵在區(qū)間上是增函數(shù)且,∴其反函數(shù)在區(qū)間上是增函數(shù),∴,故選A

    12.解析:如圖,①當(dāng)或時(shí),圓面被分成2塊,涂色方法有20種;②當(dāng)或時(shí),圓面被分成3塊,涂色方法有60種;

    ③當(dāng)時(shí),圓面被分成4塊,涂色方法有120種,所以m的取值范圍是,故選A。

    13.解析:做出表示的平面區(qū)域如圖,當(dāng)直線經(jīng)過點(diǎn)時(shí),取得最大值5。

    14.解析:∵,∴時(shí),,又時(shí),滿足上式,因此,,

    ∴。

    15.解析:設(shè)正四面體的棱長(zhǎng)為,連,取的中點(diǎn),連,∵為的中點(diǎn),∴∥,∴或其補(bǔ)角為與所成角,∵,,∴,∴,又∵,∴,∴與所成角的余弦值為。

    16.解析:∵,∴,∵點(diǎn)為的準(zhǔn)線與軸的交點(diǎn),由向量的加法法則及拋物線的對(duì)稱性可知,點(diǎn)為拋物線上關(guān)于軸對(duì)稱的兩點(diǎn)且做出圖形如右圖,其中為點(diǎn)到準(zhǔn)線的距離,四邊形為菱形,∴,∴,∴,∴,∴,∴向量與的夾角為。

    17.(10分)解析:(Ⅰ)由正弦定理得,,,…2分

    ∴,,………4分

    (Ⅱ)∵,,∴,∴,………………………6分

    又∵,∴,∴,………………………8分

    ∴!10分

    18.解析:(Ⅰ)∵,∴;……………………理3文4分

    (Ⅱ)∵三科會(huì)考不合格的概率均為,∴學(xué)生甲不能拿到高中畢業(yè)證的概率;……………………理6文8分

    (Ⅲ)∵每科得A,B的概率分別為,∴學(xué)生甲被評(píng)為三好學(xué)生的概率為!12分

    ∵,,,!9分

    ∴的分布列如下表:

    0

    1

    2

    3

    ∴的數(shù)學(xué)期望!12分

    19.(12分)解析:(Ⅰ)時(shí),

    ,,

        

    由得, 或   ………3分

     

     

    +

    0

    0

    +

    遞增

    極大值

    遞減

    極小值

    遞增

    ,      ………………………6分

    (Ⅱ)在定義域上是增函數(shù),

    對(duì)恒成立,即              

       ………………………9分

    又(當(dāng)且僅當(dāng)時(shí),)

                    

     ………………………4分

                  

    20.解析:(Ⅰ)∵∥,,∴,∵底面,∴,∴平面,∴,又∵平面,∴,∴平面,∴!4分

    (Ⅱ)∵平面,∴,,∴為二面角的平面角,………………………6分

    ,,∴,又∵平面,,∴,∴二面角的正切值的大小為。………………………8分

    (Ⅲ)過點(diǎn)做∥,交于點(diǎn),∵平面,∴為在平面內(nèi)的射影,∴為與平面所成的角,………………………10分

    ∵,∴,又∵∥,∴和與平面所成的角相等,∴與平面所成角的正切值為!12分

    解法2:如圖建立空間直角坐標(biāo)系,(Ⅰ)∵,,∴點(diǎn)的坐標(biāo)分別是,,,∴,,設(shè),∵平面,∴,∴,取,∴,∴!4分

    (Ⅱ)設(shè)二面角的大小為,∵平面的法向量是,平面的法向量是,∴,∴,∴二面角的正切值的大小為。………………………8分

    (Ⅲ)設(shè)與平面所成角的大小為,∵平面的法向量是,,∴,∴,∴與平面所成角的正切值為!12分

    21.(Ⅰ) 解析:如圖,設(shè)右準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)分別向軸及右準(zhǔn)線引垂線,∵,∴,又∵ ∥,∴,………………………2分

    ∴,又∵,∴,又∵,解得,∴,∴雙曲線的方程為。………………………4分

    (Ⅱ)聯(lián)立方程組   消得:

                     

    由直線與雙曲線交于不同的兩點(diǎn)得:

    即   于是 ,且    ………………①………………………6分

    設(shè)、,則

    ……………………9分

    又,所以,解得      ……………②   

    由①和②得    即 或

    故的取值范圍為。………………………12分

    22.(12分)解析:(Ⅰ)∵,∴,∴,∴數(shù)列是等差數(shù)列,………………………2分

    又∵,,∴公差為2,

    ∴,………………………4分

    (Ⅱ)∵,∴,

    ∴數(shù)列是公比為2的等比數(shù)列,

    ∵,∴,………………………6分

    (Ⅲ)∵,

    ∴………………………8分

    ∴………………………10分

    ∵,∴,又∵,∴………………………12分

     

     


    同步練習(xí)冊(cè)答案