亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (2)記的前項(xiàng)和分別為.證明:. 查看更多

     

    題目列表(包括答案和解析)

    已知曲線C的橫坐標(biāo)分別為1和,且a1=5,數(shù)列{xn}滿足xn+1 = tf (xn – 1) + 1(t > 0且).設(shè)區(qū)間,當(dāng)時(shí),曲線C上存在點(diǎn)使得xn的值與直線AAn的斜率之半相等.

    證明:是等比數(shù)列;

    當(dāng)對(duì)一切恒成立時(shí),求t的取值范圍;

    記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)時(shí),試比較Snn + 7的大小,并證明你的結(jié)論.

    查看答案和解析>>

         (13分) 已知曲線C的橫坐標(biāo)分別為1和,且a1=5,數(shù)列{xn}滿足xn+1 = tf (xn – 1) + 1(t > 0且).設(shè)區(qū)間,當(dāng)時(shí),曲線C上存在點(diǎn)使得xn的值與直線AAn的斜率之半相等.

    (1)     證明:是等比數(shù)列;

    (2)     當(dāng)對(duì)一切恒成立時(shí),求t的取值范圍;

    (3)     記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)時(shí),試比較Snn + 7的大小,并證明你的結(jié)論.

    查看答案和解析>>

    (13分) 已知曲線C的橫坐標(biāo)分別為1和,且a1=5,數(shù)列{xn}滿足xn+1 = tf (xn – 1) + 1(t > 0且).設(shè)區(qū)間,當(dāng)時(shí),曲線C上存在點(diǎn)使得xn的值與直線AAn的斜率之半相等.
    (1)    證明:是等比數(shù)列;
    (2)    當(dāng)對(duì)一切恒成立時(shí),求t的取值范圍;
    (3)    記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)時(shí),試比較Snn + 7的大小,并證明你的結(jié)論.

    查看答案和解析>>

    已知曲線C:f(x)=x2上的點(diǎn)A、An的橫坐標(biāo)分別為1和an(n=1,2,3,…),且a1=5,數(shù)列{xn}滿足xn+1=tf(xn-1)+1(t>0且t≠,t≠1).設(shè)區(qū)間Dn=[1,an](an>1),當(dāng)xn∈Dn時(shí),曲線C上存在點(diǎn)Pn(xn,f(xn))使得xn的值與直線AAn的斜率之半相等.

    (1)證明:{1+logt(xn-1)}是等比數(shù)列;

    (2)當(dāng)Dn+1Dn對(duì)一切n∈N*恒成立時(shí),求t的取值范圍;

    (3)記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)t=時(shí),試比較Sn與n+7的大小,并證明你的結(jié)論.

    查看答案和解析>>

    已知曲線C:f(x)=x2上的點(diǎn)A、An的橫坐標(biāo)分別為1和an(n=1,2,3,…),且a1=5,數(shù)列{xn}滿足xn+1=tf(xn-1)+1(t>0且t≠,t≠1).設(shè)區(qū)間Dn=[1,an](an>1),當(dāng)xn∈Dn時(shí),曲線C上存在點(diǎn)Pn(xn,f(xn))使得xn的值與直線AAn的斜率之半相等.

    (1)證明:{1+logt(xn-1)}是等比數(shù)列;

    (2)當(dāng)Dn+1Dn對(duì)一切n∈N*恒成立時(shí),求t的取值范圍;

    (3)記數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)t=時(shí),試比較Sn與n+7的大小,并證明你的結(jié)論.

    查看答案和解析>>

    一.選擇題

    1―5  CBABA   6―10  CADDA

    二.填空題

    11.       12.()       13.2          14.         15.

    16.(1,4)

    三.解答題

    數(shù)學(xué)理數(shù)學(xué)理17,解:①         =2(1,0)                      (2分)             

            ?,                                        (4分)

    <pre id="11166"></pre>

    ?

            cos              =

     

            由,  ,    即B=              (6分)

                                                   (7分)

                                                            (9分)

                                                            (11分)

    的取值范圍是(,1                                                      (13分)

    18.解:①設(shè)雙曲線方程為:  ()                                 (1分)

    由橢圓,求得兩焦點(diǎn),                                           (3分)

    ,又為一條漸近線

    , 解得:                                                     (5分)

                                                        (6分)

    ②設(shè),則                                                      (7分)

          

    ?                             (9分)

    ,  ?              (10分)

                                                    (11分)

      ?

    ?                                        (13分)

          <td id="rjvax"><strong id="rjvax"></strong></td>

          1.   單減區(qū)間為[]        (6分)

             

            ②(i)當(dāng)                                                      (8分)

            (ii)當(dāng),

            ,  (),,

            則有                                                                     (10分)

            ,

                                                           (11分)

              在(0,1]上單調(diào)遞減                     (12分)

                                                             (13分)

            20.解:①       

                                                                    (2分)

            從而數(shù)列{}是首項(xiàng)為1,公差為C的等差數(shù)列

              即                                (4分)

             

               即………………※              (6分)

            當(dāng)n=1時(shí),由※得:c<0                                                    (7分)

            當(dāng)n=2時(shí),由※得:                                                 (8分)

            當(dāng)n=3時(shí),由※得:                                                 (9分)

            當(dāng)

                (

                                                      (11分)

                                     (12分)

            綜上分析可知,滿足條件的實(shí)數(shù)c不存在.                                    (13分)

            21.解:①設(shè)過(guò)A作拋物線的切線斜率為K,則切線方程:

                                                                            (2分)

                即

                                                                                                               (3分)

            ②設(shè)   又

                 

                                                                     (4分)

            同理可得 

                                                            (5分)

            又兩切點(diǎn)交于  ,

                                           (6分)

            ③由  可得:

             

                                                            (8分)

                              (9分)

             

            當(dāng) 

            當(dāng) 

                                                                 (11分)

            當(dāng)且僅當(dāng),取 “=”,此時(shí)

                                                   (12分)

            22.①證明:由,    

              即證

              ()                                    (1分)

            當(dāng)  

                  即:                          (3分)

              ()    

            當(dāng)   

               

                                                                     (6分)

            ②由      

            數(shù)列

                                                          (8分)

            由①可知, 

                                (10分)

            由錯(cuò)位相減法得:                                       (11分)

                                                (12分)