亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    解:(Ⅰ)依題意知.故=.∴=.----4分 查看更多

     

    題目列表(包括答案和解析)

    中,是三角形的三內(nèi)角,是三內(nèi)角對應(yīng)的三邊,已知成等差數(shù)列,成等比數(shù)列

    (Ⅰ)求角的大小;

    (Ⅱ)若,求的值.

    【解析】第一問中利用依題意,故

    第二問中,由題意又由余弦定理知

    ,得到,所以,從而得到結(jié)論。

    (1)依題意,故……………………6分

    (2)由題意又由余弦定理知

    …………………………9分

       故

               代入

     

    查看答案和解析>>

    甲船由島出發(fā)向北偏東的方向作勻速直線航行,速度為海里∕小時,在甲船從島出發(fā)的同時,乙船從島正南海里處的島出發(fā),朝北偏東的方向作勻速直線航行,速度為海里∕小時。

    ⑴求出發(fā)小時時兩船相距多少海里?

    ⑴   兩船出發(fā)后多長時間相距最近?最近距離為多少海里?

    【解析】第一問中根據(jù)時間得到出發(fā)小時時兩船相距的海里為

    第二問設(shè)時間為t,則

    利用二次函數(shù)求得最值,

    解:⑴依題意有:兩船相距

    答:出發(fā)3小時時兩船相距海里                           

    ⑵兩船出發(fā)后t小時時相距最近,即

    即當(dāng)t=4時兩船最近,最近距離為海里。

     

    查看答案和解析>>

    如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

    (Ⅰ)證明PC⊥AD;

    (Ⅱ)求二面角A-PC-D的正弦值;

    (Ⅲ)設(shè)E為棱PA上的點(diǎn),滿足異面直線BE與CD所成的角為30°,求AE的長.

     

    【解析】解法一:如圖,以點(diǎn)A為原點(diǎn)建立空間直角坐標(biāo)系,依題意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

    (1)證明:易得于是,所以

    (2) ,設(shè)平面PCD的法向量,

    ,即.不防設(shè),可得.可取平面PAC的法向量于是從而.

    所以二面角A-PC-D的正弦值為.

    (3)設(shè)點(diǎn)E的坐標(biāo)為(0,0,h),其中,由此得.

    ,故 

    所以,,解得,即.

    解法二:(1)證明:由,可得,又由,,故.又,所以.

    (2)如圖,作于點(diǎn)H,連接DH.由,,可得.

    因此,從而為二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

    因此所以二面角的正弦值為.

    (3)如圖,因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012071821180638818491/SYS201207182118431693242163_ST.files/image044.png">,故過點(diǎn)B作CD的平行線必與線段AD相交,設(shè)交點(diǎn)為F,連接BE,EF. 故或其補(bǔ)角為異面直線BE與CD所成的角.由于BF∥CD,故.在中,

    中,由,,

    可得.由余弦定理,,

    所以.

     

    查看答案和解析>>

    已知,函數(shù)

    (1)當(dāng)時,求函數(shù)在點(diǎn)(1,)的切線方程;

    (2)求函數(shù)在[-1,1]的極值;

    (3)若在上至少存在一個實(shí)數(shù)x0,使>g(xo)成立,求正實(shí)數(shù)的取值范圍。

    【解析】本試題中導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用。(1)中,那么當(dāng)時,  又    所以函數(shù)在點(diǎn)(1,)的切線方程為;(2)中令   有 

    對a分類討論,和得到極值。(3)中,設(shè),,依題意,只需那么可以解得。

    解:(Ⅰ)∵  ∴

    ∴  當(dāng)時,  又    

    ∴  函數(shù)在點(diǎn)(1,)的切線方程為 --------4分

    (Ⅱ)令   有 

    ①         當(dāng)

    (-1,0)

    0

    (0,

    ,1)

    +

    0

    0

    +

    極大值

    極小值

    的極大值是,極小值是

    ②         當(dāng)時,在(-1,0)上遞增,在(0,1)上遞減,則的極大值為,無極小值。 

    綜上所述   時,極大值為,無極小值

    時  極大值是,極小值是        ----------8分

    (Ⅲ)設(shè),

    求導(dǎo),得

    ,    

    在區(qū)間上為增函數(shù),則

    依題意,只需,即 

    解得  (舍去)

    則正實(shí)數(shù)的取值范圍是(,

     

    查看答案和解析>>

    設(shè)函數(shù)f(x)=在[1,+∞上為增函數(shù).  

    (1)求正實(shí)數(shù)a的取值范圍;

    (2)比較的大小,說明理由;

    (3)求證:(n∈N*, n≥2)

    【解析】第一問中,利用

    解:(1)由已知:,依題意得:≥0對x∈[1,+∞恒成立

    ∴ax-1≥0對x∈[1,+∞恒成立    ∴a-1≥0即:a≥1

    (2)∵a=1   ∴由(1)知:f(x)=在[1,+∞)上為增函數(shù),

    ∴n≥2時:f()=

      

     (3)  ∵   ∴

     

    查看答案和解析>>


    同步練習(xí)冊答案