題目列表(包括答案和解析)
在△中,∠
,∠
,∠
的對(duì)邊分別是
,且
.
(1)求∠的大;(2)若
,
,求
和
的值.
【解析】第一問利用余弦定理得到
第二問
(2) 由條件可得
將 代入 得 bc=2
解得 b=1,c=2 或 b=2,c=1 .
在中,
是三角形的三內(nèi)角,
是三內(nèi)角對(duì)應(yīng)的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角的大;
(Ⅱ)若,求
的值.
【解析】第一問中利用依題意且
,故
第二問中,由題意又由余弦定理知
,得到,所以
,從而得到結(jié)論。
(1)依題意且
,故
……………………6分
(2)由題意又由余弦定理知
…………………………9分
即 故
代入
得
在△ABC中,已知B=45°,D是BC邊上的一點(diǎn),AD=10,AC=14,DC=6,
求⑴ ∠ADB的大;⑵ BD的長(zhǎng).
【解析】本試題主要考查了三角形的余弦定理和正弦定理的運(yùn)用
第一問中,∵cos∠ADC=
==-
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=
∴ cos∠ADB=60°
第二問中,結(jié)合正弦定理∵∠DAB=180°-∠ADB-∠B=75°
由=
得BD=
=5(
+1)
解:⑴ ∵cos∠ADC=
==-
,……………………………3分
∴ cos∠ADB=cos(180°-∠ADC)=-cos∠ADC=,
……………5分
∴ cos∠ADB=60° ……………………………6分
⑵ ∵∠DAB=180°-∠ADB-∠B=75° ……………………………7分
由=
……………………………9分
得BD==5(
+1)
在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,向量=(sinA,b+c),
=(a-c,sinC-sinB),滿足
=
(Ⅰ)求角B的大;
(Ⅱ)設(shè)=(sin(C+
),
),
=(2k,cos2A) (k>1),
有最大值為3,求k的值.
【解析】本試題主要考查了向量的數(shù)量積和三角函數(shù),以及解三角形的綜合運(yùn)用
第一問中由條件|p +q |=| p -q |,兩邊平方得p·q=0,又
p=(sinA,b+c),q=(a-c,sinC-sinB),代入得(a-c)sinA+(b+c)(sinC-sinB)=0,
根據(jù)正弦定理,可化為a(a-c)+(b+c)(c-b)=0,
即,又由余弦定理
=2acosB,所以cosB=
,B=
第二問中,m=(sin(C+),
),n=(2k,cos2A) (k>1),m·n=2ksin(C+
)+
cos2A=2ksin(C+B) +
cos2A
=2ksinA+-
=-
+2ksinA+
=-
+
(k>1).
而0<A<,sinA∈(0,1],故當(dāng)sin=1時(shí),m·n取最大值為2k-
=3,得k=
.
在△ABC中,內(nèi)角A、B、C所對(duì)邊的邊長(zhǎng)分別是a、b、c,已知c=2,C=.
(Ⅰ)若△ABC的面積等于,求a、b;
(Ⅱ)若,求△ABC的面積.
【解析】第一問中利用余弦定理及已知條件得又因?yàn)椤鰽BC的面積等于
,所以
,得
聯(lián)立方程,解方程組得
.
第二問中。由于即為即
.
當(dāng)時(shí),
,
,
,
所以
當(dāng)
時(shí),得
,由正弦定理得
,聯(lián)立方程組
,解得
,得到
。
解:(Ⅰ) (Ⅰ)由余弦定理及已知條件得,………1分
又因?yàn)椤鰽BC的面積等于,所以
,得
,………1分
聯(lián)立方程,解方程組得.
……………2分
(Ⅱ)由題意得,
即.
…………2分
當(dāng)時(shí),
,
,
,
……1分
所以 ………………1分
當(dāng)時(shí),得
,由正弦定理得
,聯(lián)立方程組
,解得
,
;
所以
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com