亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (2)若x∈[0.]時.f(x)的最大值為4.求a的值.并指出這時x的值. 查看更多

     

    題目列表(包括答案和解析)

    x∈(0,
    12
    )
    時,則f(x)=2x(1-2x)的最大值為
     

    查看答案和解析>>

    設(shè)f(x)是定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=
    x
    ,若對任意的x∈[a,a+2]不等式f(x+a)
    3
    f(x)恒成立,則a的最大值為
    -4
    -4

    查看答案和解析>>

    設(shè)f(x)是偶函數(shù),且當(dāng)x≥0時,f(x)=
    x(3-x)       ,0≤x≤3
    (x-3)(a-x)      ,x>3

    (1)當(dāng)x<0時,求f(x)的解析式;
    (2)設(shè)函數(shù)f(x)在區(qū)間[-5,5]上的最大值為g(a),試求g(a)的表達(dá)式;
    (3)若方程f(x)=m有四個不同的實(shí)根,且它們成等差數(shù)列,試探求a與m滿足的條件.

    查看答案和解析>>

    設(shè)f(x)=4x2-1,g(x)=-2x+1
    (1)若關(guān)于x的方程f(2x)=2g(x)+m有負(fù)實(shí)數(shù)根,求m的取值范圍;
    (2)若F(x)=af(x)+bg(x)(a,b都為常數(shù),且a>0)
    ①證明:當(dāng)0≤x≤1時,F(xiàn)(x)的最大值是|2a-b|+a;
    ②求證:當(dāng)0≤x≤1時,F(xiàn)(x)+|2a-b|+a≥0.

    查看答案和解析>>

    設(shè)f(x)=x2+bx+c(b,c∈R).若|x|≥2時,f(x)≥0,且f(x)在區(qū)間(2,3]上的最大值為1,求b2+c2的最大值和最小值.

    查看答案和解析>>

      1.D 2.C 3.D 4.(理)D (文)A 5.C 6.B 7.C 8.(理)C。ㄎ模〢 9.(理)B。ㄎ模〥 10.A 11.C 12.D

      13.-2 14.6∶2∶ 15.(文)7 (理)a≥3 16.(文)a≥3(理)1

      17.解析:(1)

      解不等式

      得

      ∴ fx)的單調(diào)增區(qū)間為,

      (2)∵ ,], ∴ 

      ∴ 當(dāng)時,

      ∵ 3+a=4,∴ a=1,此時

      18.解析:由已知得,,

      ∴ 

      欲使夾角為鈍角,需

      得 

      設(shè)

      ∴ ,∴ 

      ∴ ,此時

      即時,向量的夾角為p .

      ∴ 夾角為鈍角時,t的取值范圍是(-7,,).

      19.解析:(甲)取AD的中點(diǎn)G,連結(jié)VG,CG

     。1)∵ △ADV為正三角形,∴ VGAD

      又平面VAD⊥平面ABCDAD為交線,

      ∴ VG⊥平面ABCD,則∠VCGCV與平面ABCD所成的角.

      設(shè)ADa,則

      在Rt△GDC中,

      

      在Rt△VGC中,

      ∴ 

      即VC與平面ABCD成30°.

      (2)連結(jié)GF,則

      而 

      在△GFC中,. ∴ GFFC

      連結(jié)VF,由VG⊥平面ABCDVFFC,則∠VFG即為二面角V-FC-D的平面角.

      在Rt△VFG中,

      ∴ ∠VFG=45°. 二面角V-FC-B的度數(shù)為135°.

     。3)設(shè)B到平面VFC的距離為h,當(dāng)V到平面ABCD的距離是3時,即VG=3.

      此時,,,

      ∴ ,

        

      ∵ ,

      ∴ 

      ∴ 

      ∴  即B到面VCF的距離為

     。ㄒ遥┮D為原點(diǎn),DA、DC、所在的直線分別為x、yz軸,建立空間直角坐標(biāo)系,設(shè)正方體棱長為a,則D(0,0,0),Aa,0,0),Ba,a,0),(0,0,a),Ea,a,),Fa,,0),G,a,0).

     。1),,-a),,0,,

      ∵ 

      ∴ 

     。2),a,),

      ∴ 

      ∴ 

      ∵ ,∴ 平面AEG

     。3)由,a),=(a,a,),

      ∴ ,

      20.解析:依題意,公寓2002年底建成,2003年開始使用.

      (1)設(shè)公寓投入使用后n年可償還全部貸款,則公寓每年收費(fèi)總額為1000×80(元)=800000(元)=80萬元,扣除18萬元,可償還貸款62萬元.

      依題意有 

      化簡得

      ∴ 

      兩邊取對數(shù)整理得.∴ 取n=12(年).

      ∴ 到2014年底可全部還清貸款.

     。2)設(shè)每生和每年的最低收費(fèi)標(biāo)準(zhǔn)為x元,因到2010年底公寓共使用了8年,

      依題意有

      化簡得

      ∴ (元)

      故每生每年的最低收費(fèi)標(biāo)準(zhǔn)為992元.

      21.解析:(1)

      而 ,

      ∴ 

      ∴ {}是首項(xiàng)為,公差為1的等差數(shù)列.

     。2)依題意有,而,

      ∴ 

      對于函數(shù),在x>3.5時,y>0,,在(3.5,)上為減函數(shù).

      故當(dāng)n=4時,取最大值3

      而函數(shù)x<3.5時,y<0,,在(,3.5)上也為減函數(shù).

      故當(dāng)n=3時,取最小值,=-1.

      (3),,

      ∴ 

      22.解析:(1)雙曲線C的右準(zhǔn)線l的方程為:x,兩條漸近線方程為:

      ∴ 兩交點(diǎn)坐標(biāo)為 ,、,

      ∵ △PFQ為等邊三角形,則有(如圖).

      ∴ ,即

      解得 c=2a.∴ 

     。2)由(1)得雙曲線C的方程為把

      把代入得

      依題意  ∴ ,且

      ∴ 雙曲線C被直線yaxb截得的弦長為

      

      

      ∵ 

      ∴ 

      整理得 

      ∴ 

      ∴ 雙曲線C的方程為:

     。ㄎ模1)設(shè)B點(diǎn)的坐標(biāo)為(0,),則C點(diǎn)坐標(biāo)為(0,+2)(-3≤≤1),

      則BC邊的垂直平分線為y+1                  ①

                               ②

      由①②消去,得

      ∵ ,∴ 

      故所求的△ABC外心的軌跡方程為:

     。2)將代入

      由,得

      所以方程①在區(qū)間,2有兩個實(shí)根.

      設(shè),則方程③在,2上有兩個不等實(shí)根的充要條件是:

      

      之得

      ∵ 

      ∴ 由弦長公式,得

      又原點(diǎn)到直線l的距離為,

      ∴ 

      ∵ ,∴ 

      ∴ 當(dāng),即時,

     


    同步練習(xí)冊答案