亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    12.設(shè)是三個(gè)不重合的平面.l 是直線.給出下列四個(gè)命題: 查看更多

     

    題目列表(包括答案和解析)

    設(shè)是三個(gè)不重合的平面,l是直線,給出下列命題:

    ①若,則;  ②若

    ③若l上存在兩點(diǎn)到的距離相等,則; ④若

    其中正確的命題是(    )

    A.①②             B.②③             C.②④             D.③④

     

    查看答案和解析>>

    設(shè)是三個(gè)不重合的平面,l是直線,給出下列命題:

    ①若,則;               ②若

    ③若l上存在兩點(diǎn)到的距離相等,則; ④若

    其中正確的命題是(     )                         

    A.①②             B.②③             C.②④             D.③④

     

    查看答案和解析>>

    設(shè)是三個(gè)不重合的平面,l 是直線,給出下列四個(gè)命題:

    ①若;                    ②若;

    ③若l上有兩點(diǎn)到的距離相等,則l//;     ④若

    其中正確命題的序號(hào)是___▲___.

     

    查看答案和解析>>

    設(shè)是三個(gè)不重合的平面,l是直線,給出下列命題:

    ①若,則;                      ②若

    ③若l上存在兩點(diǎn)到的距離相等,則; ④若

    其中正確的命題是(     )                                        

    A.①②                   B.②③                      C.②④                          D.③④

     

    查看答案和解析>>

    設(shè)是三個(gè)不重合的平面,l 是直線,給出下列四個(gè)命題:

        ①若;         

        ②若;

        ③若l上有兩點(diǎn)到的距離相等,則l//;

        ④若

        其中正確命題的序號(hào)是____________.

     

    查看答案和解析>>

     

    一、選擇題(每小題5 分,共40 分)

    DACDA  DBA

    二、填空題(每小題5 分,共35分)

    9.     10.400     11.180    12.②④

    13.     14.(i)(3分)    (ii)(2分)

    15.(i)(3分);    (ii) (2分)

    16.(1)

    當(dāng)

     ……………………4分

    (2)令 ………………6分

    解得:

    所以,的單調(diào)遞增區(qū)間是…………8分

    (3)由,……………………10分

    所以,

    解得:

    所以,的取值集合……12分

    17.解:(1)坐A 班車的三人中恰有2 人正點(diǎn)到達(dá)的概率為

    P3(2)= C0.72×0.31 = 0.441 ……………………(6 分)

    (2)記“A 班車正點(diǎn)到達(dá)”為事件M,“B 班車正點(diǎn)到達(dá)冶為事件N

    則兩人中至少有一人正點(diǎn)到達(dá)的概率為

    P = P(M?N)+ P(M?)+ P(?N)

    = 0.7 ×0.75 + 0.7 ×0.25 + 0.3 ×0.75 = 0.525 + 0.175 + 0.225 = 0.925 (12 分)

    18.解:由已知得

    所以數(shù)列{}是以1為首項(xiàng),公差為1的等差數(shù)列;(2分)

    =1+…………………………4分

    (2)由(1)知 ……………………6分

     …………………………8分

     ……………………10分

    所以:…………………………12分

    19.解:M、N、Q、B的位置如右圖示。(正確標(biāo)出給1分)

    (1)∵ND//MB且ND=MB

    ∴四邊形NDBM為平行四邊形

    ∴MN//DB………………3分

    ∴BD平面PBD,MN

    ∴MN//平面PBD……………………4分

    (2)∵QC⊥平面ABCD,BD平面ABCD,

    ∴BD⊥QC……………………5分

    又∵BD⊥AC,

    ∴BD⊥平面AQC…………………………6分

    ∵AQ面AQC

    ∴AQ⊥BD,同理可得AQ⊥PB,

    ∵BDPD=B

    ∴AQ⊥面PDB……………………………8分

          <td id="rjvax"><strong id="rjvax"></strong></td>
        • ∵在正方體中,PB=PB

          ∴PE⊥DB……………………10分

          ∵四邊形NDBM為矩形

          ∴EF⊥DB

          ∴∠PEF為二面角P―DB―M為平面角………………11分

          ∵EF⊥平面PMN

          ∴EF⊥PF

          設(shè)正方體的棱長(zhǎng)為a,則在直角三角形EFP中

          …………………………13分

          解法2:設(shè)正方體的棱長(zhǎng)為a,

          以D為坐標(biāo)原點(diǎn)建立空間直角坐標(biāo)系如圖:

          則點(diǎn)A(a,0,0),P(a,0,a),Q(0,a,a)…………9分

          ………………10分

          ∵PQ⊥面DBM,由(2)知AQ⊥面PDB

          分別為平面PDB、平面DBM的法向量

          ……………………12分

          ………………13分

          20.解:(1)由題意,可設(shè)橢圓的標(biāo)準(zhǔn)方程為……1分

          的焦點(diǎn)為F(1,0)

          ……………………3分

          所以,橢圓的標(biāo)準(zhǔn)方程為

          其離心率為 ……………………5分

          (2)證明:∵橢圓的右準(zhǔn)線1的方程為:x=2,

          ∴點(diǎn)E的坐標(biāo)為(2,0)設(shè)EF的中點(diǎn)為M,則

          若AB垂直于x軸,則A(1,y1),B(1,-y1),C(2,-y1

          ∴AC的中點(diǎn)為

          ∴線段EF的中點(diǎn)與AC的中點(diǎn)重合,

          ∴線段EF被直線AC平分,…………………………6分

          若AB不垂直于x軸,則可設(shè)直線AB的方程為

          …………………………7分

          ………………8分

          則有………………9分

          ……………………10分

          ∴A、M、C三點(diǎn)共線,即AC過(guò)EF的中點(diǎn)M,

          ∴線段EF被直線AC平分!13分

          21.解:(1)依題意,

          …………………………3分

          (2)若在區(qū)間(―2,3)內(nèi)有兩個(gè)不同的極值點(diǎn),則方程在區(qū)間(―2,3)內(nèi)有兩個(gè)不同的實(shí)根,

          但a=0時(shí),無(wú)極值點(diǎn),

          ∴a的取值范圍為……………………8分

          (3)在(1)的條件下,a=1,要使函數(shù)的圖象恰有三個(gè)交點(diǎn),等價(jià)于方程,

          即方程恰有三個(gè)不同的實(shí)根。

          =0是一個(gè)根,

          *        應(yīng)使方程有兩個(gè)非零的不等實(shí)根,

          ………………12分

          *存在的圖象恰有三個(gè)交點(diǎn)…………………………13分

           

          1. <source id="nprtf"></source>
            • <rp id="nprtf"></rp>
              <small id="nprtf"><tbody id="nprtf"></tbody></small>