題目列表(包括答案和解析)
(本小題滿分14分)
在△OAB的邊OA,OB上分別有一點(diǎn)P,Q,已知:
=1:2,
:
=3:2,連結(jié)AQ,BP,設(shè)它們交于點(diǎn)R,若
=a,
=b.
(1)用a與 b表示;
(2)過R作RH⊥AB,垂足為H,若| a|=1, | b|=2, a與 b的夾角的取值范圍.
(本小題滿分14分)已知A(8,0),B、C兩點(diǎn)分別在y軸和x軸上運(yùn)動(dòng),并且滿足。
(1)求動(dòng)點(diǎn)P的軌跡方程。
(2)若過點(diǎn)A的直線L與動(dòng)點(diǎn)P的軌跡交于M、N兩點(diǎn),且
其中Q(-1,0),求直線L的方程.
(本小題滿分14分)
已知函數(shù),a>0,w.w.w.k.s.5.u.c.o.m
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè)a=3,求在區(qū)間{1,
}上值域。期中e=2.71828…是自然對(duì)數(shù)的底數(shù)。
(本小題滿分14分)
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=其中λ為實(shí)數(shù),n為正整數(shù)。
(Ⅰ)對(duì)任意實(shí)數(shù)λ,證明數(shù)列{an}不是等比數(shù)列;
(Ⅱ)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論;
(Ⅲ)設(shè)0<a<b,Sn為數(shù)列{bn}的前n項(xiàng)和。是否存在實(shí)數(shù)λ,使得對(duì)任意正整數(shù)n,都有
a<Sn<b?若存在,求λ的取值范圍;若不存在,說明理由。
(本小題滿分14分)
如圖(1),是等腰直角三角形,
,
、
分別為
、
的中點(diǎn),將
沿
折起, 使
在平面
上的射影
恰為
的中點(diǎn),得到圖(2).
(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積.
一、選擇題(5分×12=60分)
B B D D C B B D D C A A
二、填空題(4分x 4=16分)
13.0.1
14.63
15. 16.①③
三、解答題(12分×5+14分=74分)
17.解:(1)2分
……………………4分
∴
的最小正周期為
…………………6分(2)∵
成等比數(shù)列 ∴
∴≥
………………………8分
∵ ∴
≤
即
≤
∵ ∴
≤
………………………………………………10分
18.解:(1)設(shè)公差
由
成等比數(shù)列得
…………………1分
∴即 ∴
舍去或
…………………………3分
∴
………………………………………………4分
又
………………………………………………5分
∴
………………………………………7分
(2)
………………………………………………8分
當(dāng)時(shí),
………………………………………10分
當(dāng)時(shí),
…………………………7分
19.解:(1)記“任取2張卡片,將卡片上的函數(shù)相加得到偶函數(shù)”為事件A,
……………………………………………………4分
(2)可能值為
……………………………………………………………5分
…………………………10分
∴ …………………………12分
20.解:(1)連結(jié)
為正△
…1分
面
3分
面面
即點(diǎn)的位置在線段
的四等分點(diǎn)且靠近
處 ………………………………………6分(2)過
作
于
,連
由(1)知
面
(三垂線定理)
∴為二面角
的平面角……9分
在中,
在中,
∴二面角的大小為
………………………………………12分
(說明:若用空間向量解,請參照給分)
21.解:(1)設(shè)
,由
取
得
則……………………2分
∴…………………………12分
又∵為定值,
則
………………5分
∵為定值,∴
為定值。
(2)∵,∴拋物線方程為:
設(shè)點(diǎn)
則
由(1)知 則
………………………………8分
又∵過點(diǎn)
∴
∴
∴
………………………………9分
代入橢圓方程得:
∴≥
………………11分
當(dāng)且僅當(dāng) 即 上式取等號(hào)
∴此時(shí)橢圓的方程為:
………………………………………12分
22.解:(1)∵ ∴
…1分
設(shè)
則
……2分
∴在
上為減函數(shù) 又
時(shí),
,∴
∴
在
上是減函數(shù)………4分(2)①∵
∴
或
時(shí)
∴
…………………………………6分
又≤
≤
對(duì)一切
恒成立
∴
≤
≤
……………8分
②顯然當(dāng)或
時(shí),不等式成立
…………………………9分
當(dāng),原不等式等價(jià)于
≥
………10分
下面證明一個(gè)更強(qiáng)的不等式:≥
…①
即≥
……②亦即
≥
…………………………11分
由(1) 知在
上是減函數(shù) 又
∴
……12分
∴不等式②成立,從而①成立 又
∴>
綜合上面∴≤
≤
且
≤
≤
時(shí),原不等式成立 ……………………………14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com