題目列表(包括答案和解析)
在中,已知
,面積
,
(1)求的三邊的長;
(2)設(shè)是
(含邊界)內(nèi)的一點,
到三邊
的距離分別是
①寫出所滿足的等量關(guān)系;
②利用線性規(guī)劃相關(guān)知識求出的取值范圍.
【解析】第一問中利用設(shè)中角
所對邊分別為
由得
又由得
即
又由得
即
又
又
得
即的三邊長
第二問中,①得
故
②
令依題意有
作圖,然后結(jié)合區(qū)域得到最值。
在中,
是三角形的三內(nèi)角,
是三內(nèi)角對應的三邊,已知
成等差數(shù)列,
成等比數(shù)列
(Ⅰ)求角的大小;
(Ⅱ)若,求
的值.
【解析】第一問中利用依題意且
,故
第二問中,由題意又由余弦定理知
,得到,所以
,從而得到結(jié)論。
(1)依題意且
,故
……………………6分
(2)由題意又由余弦定理知
…………………………9分
即 故
代入
得
如圖,在南北方向直線延伸湖岸上有一港口A,一汽艇以60 km/h的速度從A出發(fā),30分鐘后因故障而停在湖里.已知汽艇出發(fā)后按直線前進,以后又改成正東方向航行,但不知最初的方向和何時改變方向.現(xiàn)要去營救,請用圖表示營救的區(qū)域.
已知中,
,
.設(shè)
,記
.
(1) 求的解析式及定義域;
(2)設(shè),是否存在實數(shù)
,使函數(shù)
的值域為
?若存在,求出
的值;若不存在,請說明理由.
【解析】第一問利用(1)如圖,在中,由
,,
可得,
又AC=2,故由正弦定理得
(2)中
由可得
.顯然,
,則
1當m>0的值域為
m+1=3/2,n=1/2
2當m<0,不滿足
的值域為
;
因而存在實數(shù)m=1/2的值域為
.
已知函數(shù),
(1)設(shè)常數(shù),若
在區(qū)間
上是增函數(shù),求
的取值范圍;
(2)設(shè)集合,
,若
,求
的取值范圍.
【解析】本試題主要考查了三角函數(shù)的性質(zhì)的運用以及集合關(guān)系的運用。
第一問中利用
利用函數(shù)的單調(diào)性得到,參數(shù)的取值范圍。
第二問中,由于解得參數(shù)m的取值范圍。
(1)由已知
又因為常數(shù),若
在區(qū)間
上是增函數(shù)故參數(shù)
(2)因為集合,
,若
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com