亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (Ⅰ)在上運(yùn)動(dòng).當(dāng)在何處時(shí).有∥平面,并且說(shuō)明理由, 查看更多

     

    題目列表(包括答案和解析)

    如圖,五面體中,.底面是正三角形,.四邊形是矩形,二面角為直二面角.

    (Ⅰ)上運(yùn)動(dòng),當(dāng)在何處時(shí),有∥平面,并且說(shuō)明理由;

    (Ⅱ)當(dāng)∥平面時(shí),求二面角余弦值.


    查看答案和解析>>

     如圖,五面體中,.底面是正三角形,.四邊形是矩形,二面角 為直二面角.

    (1)上運(yùn)動(dòng),當(dāng)在何處時(shí),有∥平面,并且說(shuō)明理由;

    (2)當(dāng)∥平面時(shí),求二面角的余弦值.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    查看答案和解析>>

    精英家教網(wǎng)如圖,在平行四邊形ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動(dòng)點(diǎn)(不與B重合),作EF⊥AB于F,F(xiàn)E的延長(zhǎng)線交DC的延長(zhǎng)線于點(diǎn)G,設(shè)BE=x,△DEF的面積為S.
    (1)求證:△BEF∽△CEG;
    (2)求用x表示S的函數(shù)關(guān)系式,并寫出x的取值范圍;
    (3)當(dāng)E運(yùn)動(dòng)到何處時(shí),S有最大值,最大值是多少?

    查看答案和解析>>

    如圖,在平行四邊形ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動(dòng)點(diǎn)(不與B重合),作EF⊥AB于F,F(xiàn)E的延長(zhǎng)線交DC的延長(zhǎng)線于點(diǎn)G,設(shè)BE=x,△DEF的面積為S.
    (1)求證:△BEF∽△CEG;
    (2)求用x表示S的函數(shù)關(guān)系式,并寫出x的取值范圍;
    (3)當(dāng)E運(yùn)動(dòng)到何處時(shí),S有最大值,最大值是多少?

    查看答案和解析>>

    如圖,在平行四邊形ABCD中,AB=4,BC=3,∠BAD=120°,E為BC上一動(dòng)點(diǎn)(不與B重合),作EF⊥AB于F,F(xiàn)E的延長(zhǎng)線交DC的延長(zhǎng)線于點(diǎn)G,設(shè)BE=x,△DEF的面積為S.
    (1)求證:△BEF△CEG;
    (2)求用x表示S的函數(shù)關(guān)系式,并寫出x的取值范圍;
    (3)當(dāng)E運(yùn)動(dòng)到何處時(shí),S有最大值,最大值是多少?

    查看答案和解析>>

     

    一、選擇題

    AACCD   BBDDD   AC

    二、填空題

    13.    14.6    15.①⑤    16.

    三、解答題

    17.解:(Ⅰ)因?yàn)?sub>,

    由正弦定理,得,              ……3分

    整理,得

    因?yàn)?sub>、的三內(nèi)角,所以,    

    因此  .                                                 ……6分

          <td id="rjvax"><strong id="rjvax"></strong></td>
          <bdo id="zmfxq"><fieldset id="zmfxq"></fieldset></bdo>
          <rp id="zmfxq"><progress id="zmfxq"></progress></rp>
              <td id="zmfxq"></td>
            • 20090520

              由余弦定理,得,所以,      ……10分

              解方程組,得 .                       ……12分

              18.解:記 “過(guò)第一關(guān)”為事件A,“第一關(guān)第一次過(guò)關(guān)”為事件A1,“第一關(guān)第二次過(guò)關(guān)”為事件A2;“過(guò)第二關(guān)”為事件B, “第二關(guān)第一次過(guò)關(guān)”為事件B1,“第二關(guān)第二次過(guò)關(guān)”為事件B2;

              (Ⅰ)該同學(xué)獲得900元獎(jiǎng)金,即該同學(xué)順利通過(guò)第一關(guān),但未通過(guò)第二關(guān),則所求概率為

              .              ……………………………3分

              (Ⅱ)該同學(xué)通過(guò)第一關(guān)的概率為:

              , ……………………5分

              該同學(xué)通過(guò)第一、二關(guān)的概率為:

                       

              ,   ………………………7分

               ∴ 在該同學(xué)已順利通過(guò)第一關(guān)的條件下,他獲3600元獎(jiǎng)金的概率是

              .     ………………………………………………………8分

              (Ⅲ)該同學(xué)獲得獎(jiǎng)金額可能取值為:0 元,900 元, 3600 元.………9分

               ,  ……………………………10分    

              , 

              ,         

              (另解:=1-

                     ∴  . ……12分

              19.(本題滿分12分)

              解: (Ⅰ)當(dāng)中點(diǎn)時(shí),有∥平面.…1分

              證明:連結(jié)連結(jié),

              ∵四邊形是矩形  ∴中點(diǎn)

              ∥平面,

              平面,平面

              ------------------4分

              的中點(diǎn).------------------5分

              (Ⅱ)建立空間直角坐標(biāo)系如圖所示,

              ,,,

              , ------------7分

              所以

              設(shè)為平面的法向量,

              則有,

              ,可得平面的一個(gè)

              法向量為,              ----------------9分

              而平面的法向量為,    ---------------------------10分

              所以,

              所以二面角的余弦值為----------------------------12分

              學(xué)科網(wǎng)(Zxxk.Com)20.(Ⅰ)設(shè)橢圓C的方程為,

              則由題意知

              ∴橢圓C的方程為      ……………………4分

              (Ⅱ)假設(shè)右焦點(diǎn)可以為的垂心,

              ,∴直線的斜率為,

              從而直線的斜率為1.設(shè)其方程為, …………………………………5分

              聯(lián)立方程組,

              整理可得:   ……………6分.

                     ,∴

              設(shè),則

              .……………7分

                     于是

                    

              解之得.    ……………10分

              當(dāng)時(shí),點(diǎn)即為直線與橢圓的交點(diǎn),不合題意;

              當(dāng)時(shí),經(jīng)檢驗(yàn)知和橢圓相交,符合題意.

              所以,當(dāng)且僅當(dāng)直線的方程為時(shí),

              點(diǎn)的垂心.…………12分  

              21.解:(Ⅰ)的導(dǎo)數(shù)

              ,解得;令,

              解得.………………………2分

              從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

              所以,當(dāng)時(shí),取得最小值.……………………………5分

              (II)因?yàn)椴坏仁?sub>的解集為P,且,

              所以,對(duì)任意的,不等式恒成立,……………………………6分

              ,得

              當(dāng)時(shí),上述不等式顯然成立,故只需考慮的情況!7分

              變形為  ………………………………………………8分

              ,則

                     令,解得;令

              解得.…………………………10分

                     從而內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增.

              所以,當(dāng)時(shí),

              取得最小值,從而,

              所求實(shí)數(shù)的取值范圍是.………………12分

              22.解:(Ⅰ)當(dāng)時(shí),    

                (Ⅱ)在中,

                在中,

              當(dāng)時(shí),中第項(xiàng)是

              中的第項(xiàng)是,

              所以中第項(xiàng)與中的第項(xiàng)相等.

              當(dāng)時(shí),中第項(xiàng)是,

              中的第項(xiàng)是

              所以中第項(xiàng)與中的第項(xiàng)相等.

                ∴ 

              (Ⅲ)

                

              +

              當(dāng)且僅當(dāng),等號(hào)成立.

              ∴當(dāng)時(shí),最。