【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2-4ax+c(a≠0)與y軸交于點A,將點A向右平移2個單位長度,得到點B.直線與x軸,y軸分別交于點C,D.
(1)求拋物線的對稱軸.
(2)若點A與點D關(guān)于x軸對稱.
①求點B的坐標(biāo).
②若拋物線與線段BC恰有一個公共點,結(jié)合函數(shù)圖象,求a的取值范圍.
【答案】(1)x=2;(2)點B坐標(biāo)為(2,3);②a>0或a≤.
【解析】
(1)根據(jù)二次函數(shù)y=ax2+bx+c(a≠0)的對稱軸方程為x=即可的答案;
(2)①根據(jù)直線與x軸,y軸分別交于點C,D可得C、D兩點坐標(biāo),根據(jù)關(guān)于x軸對稱的點的坐標(biāo)特征可得A點坐標(biāo),根據(jù)平移性質(zhì)即可得B點坐標(biāo);
②分a>0與a<0兩種情況,結(jié)合圖象,根據(jù)二次函數(shù)的性質(zhì)即可得答案.
(1)∵拋物線的解析式為y=ax2-4ax+c(a≠0),
∴拋物線的對稱軸為x==2,
(2)①∵直線解析式為,
∴x=0時,y=-3,y=0時,x=5,
∴C點坐標(biāo)為(5,0),D點坐標(biāo)為(0,-3),
∵點A于點D關(guān)于x軸對稱,
∴點A坐標(biāo)為(0,3),
∵將點A向右平移2個單位長度,得到點B,
∴點B坐標(biāo)為(2,3).
②如圖,當(dāng)a>0時,拋物線開口向上,
∵點A(0,3),對稱軸為x=2,
∴拋物線經(jīng)過點A關(guān)于x=2的對稱點(4,3),
∴拋物線與線段BC都有交點,
當(dāng)a<0時,拋物線的開口向下,
∵點A(0,3),
∴c=3,
∴拋物線解析式為y=ax2-4ax+3,
當(dāng)x=5時,25a-20a+3=0,
解得:a=,
∵越大,拋物線的開口越小,
∴a≤.
綜上所述:a的取值范圍為a>0或a≤.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰△OBC的邊OB在x軸上,OB=CB,OB邊上的高CA與OC邊上的高BE相交于點D,連接OD,AB=,∠CBO=45°,在直線BE上求點M,使△BMC與△ODC相似,則點M的坐標(biāo)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線上部分點的橫坐標(biāo)x與縱坐標(biāo)y的對應(yīng)值如下表
x | … | -2 | -1 | 0 | 1 | 2 | 3 | … |
y | … | -4 | 0 | 2 | 2 | 0 | -4 | … |
下列結(jié)論:①拋物線開口向下;②當(dāng)時,y隨x的增大而減;③拋物線的對稱軸是直線
;④函數(shù)
的最大值為2.其中所有正確的結(jié)論為( )
A.①②③B.①③C.①③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是線段OB上的一點(不與點B重合),D,E是半圓上的點且CD與BE交于點F,用①,②DC⊥AB,③FB=FD中的兩個作為題設(shè),余下的一個作為結(jié)論組成一個命題,則組成真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角三角形中,除直角外的5個元素中,已知2個元素(其中至少有1個是邊),就可以求出其余的3個未知元素.對于任意三角形,我們需要知道幾個元素就可以求出其余的未知元素呢?思考并解答下列問題:
(1)觀察圖①~圖④,根據(jù)圖中三角形的已知元素,可以求出其余未知元素的序號是____.
(2)如圖⑤,在中,已知
,
,
,能否求出BC的長度?如果能,請求出BC的長度;如果不能,請說明理由.(參考數(shù)據(jù):
,
,
)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了解旅游人數(shù)的變化情況,收集并整理了2017年1月至2019年12月期間的月接待旅游量(單位:萬人次)的數(shù)據(jù)并繪制了統(tǒng)計圖如下:
根據(jù)統(tǒng)計圖提供的信息,下列推斷不合理的是( )
A.2017年至2019年,年接待旅游量逐年增加
B.2017年至2019年,各年的月接待旅游量高峰期大致在7,8月份
C.2019年的月接待旅游量的平均值超過300萬人次
D.2017年至2019年,各年下半年(7月至12月)的月接待旅游量相對于上半年(1月至6月)波動性更小,變化比較平穩(wěn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,函數(shù)的圖象G經(jīng)過點
,直線
與y軸交于點B,與圖象G交于點C.
(1)求m的值.
(2)橫、縱坐標(biāo)都是整數(shù)的點叫做整點.記圖象G在點A,C之間的部分與線段BA,BC圍成的區(qū)域(不含邊界)為W.
①當(dāng)直線l過點時,直接寫出區(qū)域W內(nèi)的整點個數(shù).
②若區(qū)域W內(nèi)的整點不少于4個,結(jié)合函數(shù)圖象,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把分別標(biāo)有數(shù)字1,2,3,4的四個小球放入A袋內(nèi),把分別標(biāo)有數(shù)字-1,-2,-2,-3,5的五個小球放入B袋內(nèi),所有的小球除了標(biāo)有的數(shù)字不同外,其余完全相同.
(1)學(xué)生甲從A、B兩個袋子中各摸出一個小球,求這兩個小球上的數(shù)字互為相反數(shù)的概率.
(2)當(dāng)B袋中標(biāo)有5的小球的數(shù)字變?yōu)?/span> 時,(1)中的概率為.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與
軸交于點C,過點C作CD∥
軸交該函數(shù)的圖象于點D,過點D作DE∥
軸交
軸于點E,已知點F(1,0),連接DF.
(1)請求出該函數(shù)圖象的項點坐標(biāo)(用含的代數(shù)式表示);
(2)如圖,若該二次函數(shù)的圖象的頂點落在軸上,P為對稱軸右側(cè)拋物線上一點;
①連接PD、PE、PF,若,求點P的坐標(biāo);
②若∠PFD=∠DEF,點P的橫坐標(biāo)為m,則m的值為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com