【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明,左上面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實以及黃實,并且利用勾
股
(股
勾)
朱實
黃實
弦實,化簡得勾
股
弦
,設(shè)勾股中勾股比為
,若向弦圖內(nèi)隨機拋擲
顆圖釘,則落在黃色圖形內(nèi)的圖釘數(shù)大約為_______________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左頂點為
,焦距為2.
(1)求橢圓的標準方程;
(2)過點的直線
與橢圓
的另一個交點為點
,與圓
的另一個交點為點
,是否存在直線
使得
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,過
的直線與拋物線
相交于
兩點.
(1)若點是點
關(guān)于坐標原點
的對稱點,求
面積的最小值;
(2)是否存在垂直于軸的直線
,使得
被以
為直徑的圓截得的弦長恒為定值?若存在,求出
的方程和定值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保護環(huán)境,某工廠在國家的號召下,把廢棄物回收轉(zhuǎn)化為某種產(chǎn)品,經(jīng)測算,處理成本(萬元)與處理量
(噸)之間的函數(shù)關(guān)系可近似的表示為:
,且每處理一噸廢棄物可得價值為
萬元的某種產(chǎn)品,同時獲得國家補貼
萬元.
(1)當時,判斷該項舉措能否獲利?如果能獲利,求出最大利潤;
如果不能獲利,請求出國家最少補貼多少萬元,該工廠才不會虧損?
(2)當處理量為多少噸時,每噸的平均處理成本最少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年第一期中國青年閱讀指數(shù)數(shù)據(jù)顯示,從閱讀需求的角度,排名前三的閱讀領(lǐng)域分別為文學(xué)、哲學(xué)及社會科學(xué)和歷史.某學(xué)校從文科生和理科生中選取了經(jīng)常閱讀的學(xué)生進行了假期閱讀內(nèi)容和閱讀時間方面的調(diào)查,得到以下數(shù)據(jù).
學(xué)生所學(xué)文理與閱讀內(nèi)容列聯(lián)表
文學(xué)閱讀人數(shù) | 非文學(xué)閱讀人數(shù) | 調(diào)查人數(shù) | |
理科生 | 70 | 130 | 200 |
文科生 | 45 | 55 | 100 |
合計 | 115 | 185 | 300 |
(Ⅰ)判斷能否有把握認為學(xué)生所學(xué)文理與閱讀內(nèi)容有關(guān)?
(Ⅱ)從閱讀時間大于30分鐘的被調(diào)查同學(xué)中隨機選取30名學(xué)生,其閱讀時間(分鐘)整理成如圖所示的莖葉圖,并繪制日均閱讀時間分布表;
其中30名同學(xué)的日均閱讀時間分布表(單位:分鐘)
閱讀時間 | |||
男生人數(shù) | 4 | 2 | |
女生人數(shù) | 10 | 2 |
求出,
的值,并根據(jù)日均時間分布表,估計這30名同學(xué)日閱讀時間的平均值;
(Ⅲ)從(Ⅱ)中日均閱讀時間高于90分鐘的同學(xué)中隨機選取2人介紹閱讀體會,求這2人性別相同的概率.
參考公式:,其中
.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,已知直線l的參數(shù)方程是(t為參數(shù)),以O為極點,x軸正半軸為極軸的極坐標系中,圓C的極坐標方程為
.
(1)求直線l的普通方程和圓C的直角坐標方程;
(2)由直線l上的點向圓C引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P—ABCD中,四邊形ABCD為平行四邊形,BD⊥DC,△PCD為正三角形,平面PCD⊥平面ABCD,E為PC的中點.
(1)證明:AP∥平面EBD;
(2)證明:BE⊥PC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓與拋物線
有共同的焦點,且離心率為
,設(shè)
分別是
為橢圓的上下頂點
(1)求橢圓的方程;
(2)過點與
軸不垂直的直線
與橢圓
交于不同的兩點
,當弦
的中點
落在四邊形
內(nèi)(含邊界)時,求直線
的斜率的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com