題目列表(包括答案和解析)
在中,
,分別是角
所對(duì)邊的長(zhǎng),
,且
(1)求的面積;
(2)若,求角C.
【解析】第一問(wèn)中,由又∵
∴
∴
的面積為
第二問(wèn)中,∵a =7 ∴c=5由余弦定理得:得到b的值,然后又由余弦定理得:
又C為內(nèi)角 ∴
解:(1) ………………2分
又∵∴
……………………4分
∴的面積為
……………………6分
(2)∵a =7 ∴c=5 ……………………7分
由余弦定理得:
∴
……………………9分
又由余弦定理得:
又C為內(nèi)角 ∴
……………………12分
另解:由正弦定理得: ∴
又
∴
已知在中,
,
,
,解這個(gè)三角形;
【解析】本試題主要考查了正弦定理的運(yùn)用。由正弦定理得到:,然后又
又再又
得到c。
解:由正弦定理得到:
又
……4分
又 ……8分
又
給出問(wèn)題:已知滿(mǎn)足
,試判定
的形狀.某學(xué)生的解答如下:
解:(i)由余弦定理可得,
,
,
,
故是直角三角形.
(ii)設(shè)外接圓半徑為
.由正弦定理可得,原式等價(jià)于
,
故是等腰三角形.
綜上可知,是等腰直角三角形.
請(qǐng)問(wèn):該學(xué)生的解答是否正確?若正確,請(qǐng)?jiān)谙旅鏅M線(xiàn)中寫(xiě)出解題過(guò)程中主要用到的思想方法;若不正確,請(qǐng)?jiān)谙旅鏅M線(xiàn)中寫(xiě)出你認(rèn)為本題正確的結(jié)果. .
已知函數(shù).]
(1)求函數(shù)的最小值和最小正周期;
(2)設(shè)的內(nèi)角
、
、
的對(duì)邊分別為
,
,
,且
,
,
若,求
,
的值.
【解析】第一問(wèn)利用
得打周期和最值
第二問(wèn)
,由正弦定理,得
,①
由余弦定理,得,即
,②
由①②解得
設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=1,b=2,cosC=. (1)求△ABC的周長(zhǎng); (2)求cos(A-C)的值.
【解析】(1)借助余弦定理求出邊c,直接求周長(zhǎng)即可.(2)根據(jù)兩角差的余弦公式需要求sinC,sinA,cosA,由正弦定理即可求出sinA,進(jìn)而可求出cosA.sinC可由cosA求出,問(wèn)題得解.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com