亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>
    (1)當(dāng)點(diǎn)在軸上移動時(shí).求點(diǎn)的軌跡, 查看更多

     

    題目列表(包括答案和解析)

     

           已知點(diǎn),點(diǎn)軸上,點(diǎn)軸的正半軸上,點(diǎn)在直線上,且

    滿足,

    (Ⅰ)當(dāng)點(diǎn)軸上移動時(shí),求點(diǎn)的軌跡的方程;

    (Ⅱ)設(shè)、為軌跡上兩點(diǎn),且>1, >0,,若,求實(shí)數(shù).

     

     

     

     

     

     

     

     

    查看答案和解析>>

    已知點(diǎn)

       (I)當(dāng)點(diǎn)P在x軸上移動時(shí),求動點(diǎn)M的軌跡方程;

       (II)設(shè)動點(diǎn)M的軌跡為C,如果過定點(diǎn)的直線與曲線C相交不同的兩點(diǎn)S、R,求證:曲線C在S、R兩點(diǎn)處的切線的交點(diǎn)在一條定直線上。

    查看答案和解析>>

    在平面直角坐標(biāo)系xoy中,設(shè)點(diǎn)F(
    1
    2
    ,0)
    ,直線l:x=-
    1
    2
    ,點(diǎn)P在直線l上移動,R是線段PF與y軸的交點(diǎn),RQ⊥FP,PQ⊥l.
    ( I) 求動點(diǎn)Q的軌跡的方程C;
    ( II) 設(shè)圓M過A(1,0),且圓心M在曲線C上,設(shè)圓M過A(1,0),且圓心M在曲線C上,TS是圓M在y軸上截得的弦,當(dāng)M運(yùn)動時(shí)弦長|TS|是否為定值?請說明理由.

    查看答案和解析>>

    (本小題滿分12分)

    已知點(diǎn),點(diǎn)軸上,點(diǎn)軸的正半軸上,點(diǎn)在直線上 ,且滿足,

    (Ⅰ)當(dāng)點(diǎn)軸上移動時(shí),求點(diǎn)的軌跡的方程;

    (Ⅱ)設(shè)為軌跡上兩點(diǎn),且,,求實(shí)數(shù),使,且

    查看答案和解析>>

    (本小題滿分12分)

          已知點(diǎn),點(diǎn)軸上,點(diǎn)軸的正半軸上,點(diǎn)在直線上,且

    滿足.

    (Ⅰ)當(dāng)點(diǎn)軸上移動時(shí),求點(diǎn)的軌跡的方程;

    (Ⅱ)設(shè)、為軌跡上兩點(diǎn),且>1, >0,,求實(shí)數(shù)

    使,且.

    查看答案和解析>>

    一、填空題(本大題共11題,每小題5分,滿分55分)

    1.     2.    3.      4.   5.           6.相離    7.     8.    9.     10.     11. 

    二、選擇題(本大題共4題,每小題5分,滿分20分)

    12.B   13. D    14.D    15.C

     

    三、解答題(本大題滿分75分)

    16.(1)證明:易知,又由平面,得,從而平面,故;                                     (4分)

      (2)解:延長交圓于點(diǎn),連接,,則,得或它的補(bǔ)角為異面直線所成的角.                       (6分)

    由題意,解得.        (8分)

    ,,得,           (10分)

    由余弦定理得,得異面直線所成的角為.                            (12分)

    17.解:(1)摸出的2個(gè)球?yàn)楫惿虻牟煌ǚN數(shù)為種,從8個(gè)球中摸出2個(gè)球的不同摸法種數(shù)為,故所求的概率為; (6分)

    (2)符合條件的摸法包括以下三種:一種是所摸得的3球中有1個(gè)紅球,1個(gè)黑球,1個(gè)白球,共有種不同摸法,                   (8分)

    一種是所摸得的3球中有2個(gè)紅球,1個(gè)其它顏色球,共有種不同摸法,                                                   (10分)

    一種是所摸得的3球均為紅球,共有種不同摸法,       (12分)

    故符合條件的不同摸法共有種.                           (14分)

    18.解:(1) 由已知,,相減得,由,又,得,故數(shù)列是一個(gè)以為首項(xiàng),以為公比的等比數(shù)列.                    (4分)

        從而  ;                 (6分)

    (2),                             (7分)

    ,故,            (11分)

    于是,

    當(dāng),即時(shí),,

    當(dāng),即時(shí),,

    當(dāng),即時(shí),不存在.                    (14分)

    19.(1)證明:任取,,且,

     

    .

     所以在區(qū)間上為增函數(shù).                        (5分)

     函數(shù)在區(qū)間上為減函數(shù).                        (6分)

       (2)解:因?yàn)楹瘮?shù)在區(qū)間上為增函數(shù),相應(yīng)的函數(shù)值為,在區(qū)間上為減函數(shù),相應(yīng)的函數(shù)值為,由題意函數(shù)的圖像與直線有兩個(gè)不同的交點(diǎn),故有,              (8分)

        易知,分別位于直線的兩側(cè),由,得,故,,又兩點(diǎn)的坐標(biāo)滿足方程,故得,,即,,(12分)

        故,

        當(dāng)時(shí),,.

        因此,的取值范圍為.                          (17分)

    20. 解:(1)設(shè),易知,,,由題設(shè),

    其中,從而,,且,

    又由已知,得

    當(dāng)時(shí),,此時(shí),得,

    ,故,,

    ,,

    當(dāng)時(shí),點(diǎn)為原點(diǎn),軸,軸,點(diǎn)也為原點(diǎn),從而點(diǎn)也為原點(diǎn),因此點(diǎn)的軌跡的方程為,它表示以原點(diǎn)為頂點(diǎn),以為焦點(diǎn)的拋物線;                                    (4分)

    (2)由題設(shè),可設(shè)直線的方程為,直線的方程為,,又設(shè)、,

     則由,消去,整理得,

     故,同理,                 (7分)

     則,

    當(dāng)且僅當(dāng)時(shí)等號成立,因此四邊形面積的最小值為.

                                                              (9分)

        (3)當(dāng)時(shí)可設(shè)直線的方程為,

    ,得,

         故,,              (13分)

         ,

         當(dāng)且僅當(dāng)時(shí)等號成立.                                (17分)

     當(dāng)時(shí),易知,得,

    故當(dāng)且僅當(dāng)時(shí)四邊形面積有最小值.         (18分)

     

     


    同步練習(xí)冊答案