試題詳情
試題詳情
橢圓C的中心為原點O,短軸端點分別為B1、B2,右焦點為 ,若 為正三角形. (1)求橢圓C的標準方程;
試題詳情
(2)過橢圓C內一點 作直線l交橢圓C于M、N兩點,求線段MN的中點P的軌跡方程;
試題詳情
(3)在(2)的條件下,求 面積的最大值.
試題詳情
試題詳情
試題詳情
(1)求 的解析式;
試題詳情
(2)試求實數k的最大值,使得對任意 恒成立;
試題詳情
(3)若 ,
試題詳情
求證:考數學(理科)卷.files/image131.gif)
試題詳情
一、 DACCA BDB 二、 9.16 10.2009 11.
12.
13. 14.3 15.②③ 三、 16.解:(1)由余弦定理得: 考數學(理科)卷.files/image141.gif) 考數學(理科)卷.files/image143.gif)
是以角C為直角的直角三角形.……………………6分
(2) 中 ………………①
………………②
②÷①得 , 則 ……………………12分 17.解:(1)因為 ……………………………………(2分) ……………………………………………………(4分) 考數學(理科)卷.files/image161.gif) 所以線路信息通暢的概率為 !6分) (2) 的所有可能取值為4,5,6,7,8。 考數學(理科)卷.files/image166.gif) ……………………………………………………………(9分) ∴ 的分布列為 考數學(理科)卷.files/image170.gif)
4 5 6 7 8 P 考數學(理科)卷.files/image172.gif)
考數學(理科)卷.files/image174.gif)
考數學(理科)卷.files/image176.gif)
考數學(理科)卷.files/image174.gif)
考數學(理科)卷.files/image172.gif)
…………………………………………………………………………………………(10分) ∴E =4× +5× +6× +7× +8× =6。……………………(12分) 18.解:解法一:(1)證明:連結OC, ∵ ABD為等邊三角形,O為BD的中點,∴AO 垂直BD!1分) ∴ AO=CO= !2分) 在 AOC中,AC= ,∴AO2+CO2=AC2, ∴∠AOC=900,即AO⊥OC。 ∴BD OC=O,∴AO⊥平面BCD!3分) (2)過O作OE垂直BC于E,連結AE, ∵AO⊥平面BCD,∴AE在平面BCD上的射影為OE。 ∴AE⊥BC。 ∠AEO為二面角A―BC―D的平面角!7分) 在Rt AEO中,AO= ,OE= , ∠ ,
∴∠AEO=arctan2。 二面角A―BC―D的大小為arctan2。 (3)設點O到面ACD的距離為 ∵VO-ACD=VA-OCD, ∴ 。 在 ACD中,AD=CD=2,AC= , 。
考數學(理科)卷.files/image199.jpg)
∴ 。 ∴點O到平面ACD的距離為 !12分) 解法二:(1)同解法一。 (2)以O為原點,如圖建立空間直角坐標系, 則O(0,0,0),A(0,0, ),B(1,0,0),C(0, ,0),D(-1,0,0) ∵AO⊥平面DCD, ∴平面BCD的法向量 =(0,0, )!5分)
考數學(理科)卷.files/image213.jpg)
, 由 。設 與 夾角為 , 則 。 ∴二面角A―BC―D的大小為arccos !8分) (3)解:設平面ACD的法向量為 又考數學(理科)卷.files/image232.gif) !11分)
設 與 夾角為 ,則考數學(理科)卷.files/image242.gif) 設O到平面ACD的距離為 , ∵ , ∴O到平面ACD的距離為 !12分)19.解:(1) . …共線,該直線過點P1(a,a),
斜率為 ……………………3分 當 時,An是一個三角形與一個梯形面積之和(如上圖所示),梯形面積是 考數學(理科)卷.files/image256.gif)
考數學(理科)卷.files/image258.gif)
于是考數學(理科)卷.files/image260.gif) 故 …………………………7分 (2)結合圖象,當考數學(理科)卷.files/image264.gif) ,……………………10分
而當考數學(理科)卷.files/image268.gif) ,
故當1<a>2時,存在正整數n,使得 ……………………13分 20.解:(1) 設橢圓C的標準方程為 , 考數學(理科)卷.files/image276.gif)
考數學(理科)卷.files/image278.gif)
又 為正三角形, a=2b,結合 ∴所求為 ……………………2分 (2)設P(x,y)M( ),N( ), 直線l的方程為 得, 考數學(理科)卷.files/image292.gif)
……………………4分
………………6分
又 且滿足上述方程, ………………7分
(3)由(2)得, ∴考數學(理科)卷.files/image303.gif) 考數學(理科)卷.files/image305.gif)
考數學(理科)卷.files/image307.gif)
…………………………9分
又考數學(理科)卷.files/image311.gif) 考數學(理科)卷.files/image313.gif)
……………………10分
設考數學(理科)卷.files/image317.gif) 考數學(理科)卷.files/image319.gif)
面積的最大值為 …………………………13分
21.解:(1)由考數學(理科)卷.files/image325.gif) 即可求得 ……………………3分 (2)當考數學(理科)卷.files/image329.gif) > > >0, 不等式 ≥ ≥ ≥ …(5分) 令考數學(理科)卷.files/image344.gif) 由于考數學(理科)卷.files/image346.gif) ……………………7分
當考數學(理科)卷.files/image350.gif) 當考數學(理科)卷.files/image352.gif) 當考數學(理科)卷.files/image354.gif) 又 , 故考數學(理科)卷.files/image358.gif) 于是由 ;………………9分 (3)由(2)知,考數學(理科)卷.files/image362.gif) 在上式中分別令x= 再三式作和即得 考數學(理科)卷.files/image366.gif)
考數學(理科)卷.files/image368.gif)
考數學(理科)卷.files/image370.gif)
所以有 ……………………13分
|
| |
| | | |
| |
| | | |