亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    2009年安慶九中高三文科數(shù)學(xué)(五)

    一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個選項中,只有一項是符合題目要求的)

    1.復(fù)數(shù),則的值是(    )

    A.-1                B.0                C.1                D.2

    試題詳情

    2.已知命題,則的否定形式為(     )

    試題詳情

      A.    B.

    試題詳情

    C.      D.

    試題詳情

    3.若關(guān)于x的方程,則m的取值范圍是(      )

    試題詳情

    A.          B.         C.        D.

    試題詳情

    4.在面積為S的三角形ABC的邊AB上任取一點P,則三角形的面積大于的概率是(      )

    試題詳情

    A.               B.                C.            D.

    試題詳情

    5.函數(shù)的零點所在的區(qū)間為(   )

    A.(-1,0)          B.(0,1)           C.(1,2)        D.(1,e)

    試題詳情

    6.如圖(1)是某循環(huán)的一部分,若改為圖(2),則運行過程中出現(xiàn)(    )

    試題詳情

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

                   (1)                                 (2)

    A.不循環(huán)            B.循環(huán)次數(shù)增加

    C.循環(huán)次數(shù)減少,且只循環(huán)有限次                   D.無限循環(huán)

     

    試題詳情

    7.在某籃球比賽中,甲、乙兩名運動員都參加了11場比賽,他們每場比賽得分的情況用莖葉圖表示如圖所示,則這兩名運動員比賽得分的中位數(shù)分別是(    )

    試題詳情

     

     

    A.13,19              B.19,13      

     

     

    C.20,18             D.18,20

     

     

     

     

    試題詳情

    8.已知在平面直角坐標系中O(0,0),A(3,0),B(0,3),動點P在直線上,滿足:最大值為(    )

    試題詳情

    A.13                B.9                    C              D.

    試題詳情

    9.過橢圓左焦點作直線交橢圓于兩點,若,且直線與長軸的夾角為,則橢圓的離心率為 (     )                                                 (     )

    試題詳情

    A、            B、                   C、                    D、

    試題詳情

    10.曲線上存在不同的三點到點(2,0)的距離構(gòu)成等比數(shù)列,則以下不可能成為公比的數(shù)是(      )

    試題詳情

        A.             B.              C.            D. 

    試題詳情

    11.設(shè)是非空實數(shù)集,若,使得對于,都有,

    試題詳情

       則稱的最大(。┲担是一個不含零的非空實數(shù)集,且m是的最大值,則(  )

    試題詳情

       A.  當時,是集合的最小值;

    試題詳情

       B.  當時,是集合的最大值;

    試題詳情

    C.  當時,是集合的最小值;

    試題詳情

    D.  當時,是集合的最大值;

    試題詳情

    12.多面體表面上三個或三個以上平面的公共點稱為多面體的頂點,用一個平面截一個n棱柱,截去一個三棱錐,剩下的多面體頂點的數(shù)目是                 (    )

    試題詳情

    A、                   B、 

    試題詳情

    C、            D、

    試題詳情

    二.填空題:(本大題共4個小題,每小題4分,共16分,把答案填在題中的橫線上)

    13.某同學(xué)5次上學(xué)途中所花時間(單位:分鐘)分別為x,y,10,11,9。已知這組數(shù)據(jù)的平均數(shù)為10,方差為2,則的值為              

    試題詳情

    14.已知函數(shù)滿足則函數(shù)的圖像在處的切線方程為                               

    試題詳情

    15.研究問題:“已知關(guān)于的不等式的解集為,解關(guān)于的不等式

    試題詳情

        ”,有如下解法:

    試題詳情

          解:由,令,則,

    試題詳情

              所以不等式的解集為

    試題詳情

       參考上述解法,已知關(guān)于的不等式的解集為,則

    試題詳情

       關(guān)于的不等式的解集為                    

     

    試題詳情

    16.運用物理中矢量運算及向量坐標表示與運算,我們知道:

    試題詳情

    (1)若兩點等分單位圓時,有相應(yīng)關(guān)系為:

    (2)四點等分單位圓時,有相應(yīng)關(guān)系為:

    試題詳情

    由此可以推知三等分單位圓時的相應(yīng)關(guān)系為:                                     

     

    試題詳情

    三.解答題(本大題共6個小題,共74分。解答應(yīng)寫出文字說明,證明過程或演算步驟)

    17.(本小題滿分12分)

    試題詳情

    函數(shù)的性質(zhì)通常指函數(shù)的定義域、值域、周期性、單調(diào)性、奇偶性等,請選擇適當?shù)奶骄宽樞,研究函?shù)f(x)= +的性質(zhì),并在此基礎(chǔ)上,作出其在的草圖

     

     

     

     

     

    試題詳情

    18.(本小題滿分12分)

    一個多面體的直觀圖及三視圖如圖所示(其中E、F分別是PB、AD的中點).

    試題詳情

       (Ⅰ)求證:EF⊥平面PBC;

       (Ⅱ)求三棱錐B―AEF的體積。

     

     

     

     

     

    試題詳情

    19.(本小題滿分12分)

    試題詳情

    已知函數(shù)其中為參數(shù),且。

    試題詳情

    (1)當時,判斷函數(shù)是否有極值;

    試題詳情

    (2)要使得函數(shù)的極小值大零,求參數(shù)的取值范圍;

    試題詳情

    (3)若對(2)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實數(shù)的取值范圍。

    試題詳情

    20.(本小題滿分12分)

    為了讓學(xué)生了解環(huán)保知識,增強環(huán)保一是,某中學(xué)舉行了一次“環(huán)保知識競賽”,共有900名學(xué)生參加了這次競賽,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計,請你根據(jù)尚未完成并有局部污損的頻率分布直方圖和頻率分布表,解答下列問題:

    (1)填充頻率分布表的表格(將答案直接填在表格中)

    (2)補全頻率分布直方圖

    試題詳情

    (3)若成績在75.5―85.5分的學(xué)生為二等獎,問獲得二等獎的學(xué)生約為多少人?

     

    分組

    頻數(shù)

    頻率

    試題詳情

    50.5―60.5

    4

    試題詳情

    0.08

    試題詳情

    60.5―70.5

     

    試題詳情

    0.16

    試題詳情

    70.5―80.5

    10

     

    試題詳情

    80.5―90.5

    16

    試題詳情

    0.32

    試題詳情

    90.5―100.5

     

     

    合計

    50

     

     

     

     

     

     

     

     

     

     

     

     

    試題詳情

    試題詳情

    21.(本小題滿分12分)

    試題詳情

    設(shè)數(shù)列的各項都為正數(shù),且對任意,都有,其中為數(shù)列的前項和。

    試題詳情

    (1)求證:;

    試題詳情

    (2)求數(shù)列的通項公式;

    試題詳情

    (3)設(shè)為非零整數(shù),),試確定的值,使得對任意,都有成立。

    試題詳情

    22.(本小題滿分14分)

    試題詳情

    以O(shè)為原點, 所在直線為軸,建立直角坐標系,設(shè),點F的坐標為(t,0),,點G的坐標為

    試題詳情

    (1)求關(guān)于t的函數(shù)的表達式,判斷函數(shù)的單調(diào)性,并證明你的判斷;

    試題詳情

    (2)設(shè)的面積,若以O(shè)為中心,F(xiàn)為焦點的橢圓經(jīng)過點G,求當取最小值時橢圓方程。

    試題詳情

    (3)在(2)的條件下,若點P的坐標為C,D是橢圓上的兩點,且,求實數(shù)的取值范圍。

     

     

     

     

     

     

     

     

    試題詳情

    一、選擇題:

    題號

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12

    答案

    C

    A

    D

    A

    B

    D

    B

    C

    B

    C

    D

    B

    1.提示:,故選C。

    2.提示:“任意的”否定為“存在”;“>”的否定為“”,故選A

    3.提示:,所以,故選D。

    4.提示:在AB上取點D,使得,則點P只能在AD內(nèi)運動,則

    5.提示:排除法選B。

    6.提示:由圖(1)改為圖(2)后每次循環(huán)時的值都為1,因此運行過程出現(xiàn)無限循環(huán),故選D

    7.提示:由莖葉圖的定義,甲得分為7,8,9,15,19,23,24,26,32,41。共11個數(shù),19是中位數(shù),乙得分為5,7,11,11,13,20,22,30,31,40。共11個數(shù),13是中位數(shù)。

    故選B。

    8.提示:所以,故選C。

    9.提示:由

    如圖

    過A作于M,則

     .

    故選B.

    10.提示:不妨設(shè)點(2,0)與曲線上不同的三的點距離為分別,它們組成的等比數(shù)列的公比為若令,顯然,又所以,不能取到。故選B。

    11.提示:使用特值法:取集合可以排除A、B;

    取集合,當可以排除C;故選D;

    12.提示:n棱柱有個頂點,被平面截去一個三棱錐后,可以分以下6種情形(圖1~6)

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    2在圖4,圖6所示的情形,還剩個頂點;

    在圖5的情形,還剩個頂點;

    在圖2,圖3的情形,還剩個頂點;

    在圖1的情形,還剩下個頂點.故選B.

    二、填空題:

    13.4   

    提示:

          由(1),(2)得,所以。

    14.   

    提示:斜率 ,切點,所以切線方程為:

    15.

    提示:當時,不等式無解,當時,不等式變?yōu)?sub> ,

    由題意得,所以,

    16.

    三、解答題:

    17.解:① ∵的定義域為R;

    ② ∵,

     ∴為偶函數(shù);

    ③ ∵,  ∴是周期為的周期函數(shù);

    ④ 當時,= ,

    ∴當單調(diào)遞減;當時,

    =

    單調(diào)遞增;又∵是周期為的偶函數(shù),∴上單調(diào)遞增,在上單調(diào)遞減();

    ⑤ ∵當;

    .∴的值域為

     ⑥由以上性質(zhì)可得:上的圖象如圖所示:

     

     

     

     

    18.解:(Ⅰ)取PC的中點G,連結(jié)EG,GD,則

    由(Ⅰ)知FD⊥平面PDC,面PDC,所以FD⊥DG。

    所以四邊形FEGD為矩形,因為G為等腰Rt△RPD斜邊PC的中點,

    所以DG⊥PC,

          <td id="rjvax"><strong id="rjvax"></strong></td>
          <form id="qmlyi"></form>

          <s id="qmlyi"></s>
        • 所以DG⊥平面PBC.

          因為DG//EF,所以EF⊥平面PBC。

          (Ⅱ) 

           

           

           

          19.解:(1)當 時,,則函數(shù)上是增函數(shù),故無極值;

          (2)。由及(1)只考慮的情況:

          x

          0

          +

          0

          -

          0

          +

          極大值

          極小值

          因此,函數(shù)在處取極小值,且

          ,所以;

          (3)由(2)可知,函數(shù)內(nèi)都是增函數(shù),又函數(shù)內(nèi)是增函數(shù),則,由(2)要使得不等式關(guān)于參數(shù)恒成立,必有,

          綜上:解得所以的取值范圍是

          20.解:

          分組

          頻數(shù)

          頻率

          50.5―60.5

          4

          0.08

          60.5―70.5

          8

          0.16

          70.5―80.5

          10

          0.20

          80.5―90.5

          16

          0.32

          90.5―100.5

          12

          0.24

          合計

          50

          1.00

          (1)

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

           

          (3)成績在75.5-85.5分的的學(xué)生占70.5-80.5分的學(xué)生的,因為成績在70.5-80.5分的學(xué)生頻率為0.2,所以成績在75.5-80.5分的學(xué)生頻率為0.1,成績在80.5-85.5分的的學(xué)生占80.5-90.5分的學(xué)生的,因為成績在80.5-90.5分的學(xué)生頻率為0.32,所以成績在80.5-85.5分的學(xué)生頻率為0.16,所以成績在75.5-85.5分的學(xué)生頻率為0.26,由于有900名學(xué)生參加了這次競賽,所以該校獲二等獎的學(xué)生約為0.26900=234人

          21.解:(1)由已知,當時,

          時,,

          兩式相減得:

          時,適合上式,

          (2)由(1)知

          時,

          兩式相減得:

          ,則數(shù)列是等差數(shù)列,首項為1,公差為1。

          (3)

          要使得恒成立,

          恒成立,

          恒成立。

          為奇數(shù)時,即恒成立,又的最小值為1,

          為偶數(shù)時,即恒成立,又的最大值為,

          為整數(shù),

          ,使得對任意,都有

          22.解:(1)由題意知

          解得,故,

          所以函數(shù)在區(qū)間 上單調(diào)遞增。

          (2)由

          所以點G的坐標為

          函數(shù)在區(qū)間 上單調(diào)遞增。

          所以當時,取得最小值,此時點F、G的坐標分別為

          由題意設(shè)橢圓方程為,由于點G在橢圓上,得

          解得

          所以得所求的橢圓方程為。

          (3)設(shè)C,D的坐標分別為,則

          ,得

          因為,點C、D在橢圓上,,,

          消去。又,解得

          所以實數(shù)的取值范圍是