亚洲人成影院在线播放高清|久久精品视频免费播放国产|日本亂倫近親相姦在线播放|国产九九免费观看思思

    <td id="rjvax"><strong id="rjvax"></strong></td>

    高三數(shù)學(xué)同步檢測(cè)(十)

    導(dǎo)數(shù)的應(yīng)用

     

    說(shuō)明:本試卷分為第Ⅰ、Ⅱ卷兩部分,請(qǐng)將第Ⅰ卷選擇題的答案填入題后括號(hào)內(nèi),第Ⅱ卷可在各題后直接作答.共100分,考試時(shí)間90分鐘.

    第Ⅰ卷(選擇題共40分)

    一、選擇題(本大題共10小題,每小題4分,共40分)

    1.函數(shù)y=x3+x的單調(diào)增區(qū)間為(   )

    A.(-∞,+∞)                   B.(0,+∞)

    C.(-∞,0)                     D.不存在

    分析 本題考查利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間.

    解 ∵y′=3x2+1>0恒成立,

    ∴y=x3+x在(-∞,+∞)上為增函數(shù),沒(méi)有減區(qū)間

    答案 A

    試題詳情

    2.若函數(shù)f(x)=x2+bx+c的圖象的頂點(diǎn)在第四象限,則函數(shù)f′(x)的圖象是(   )

    試題詳情

    分析 本題主要考查二次函數(shù)及導(dǎo)數(shù)的基礎(chǔ)知識(shí).

    解 利用導(dǎo)數(shù)公式求出導(dǎo)函數(shù),從而確定圖象.

    ∵f(x)=x2+bx+c的圖象的頂點(diǎn)在第四象限,

    試題詳情

    ∴->0,即b<0.

    ∵f′(x)=2x+b(b<0),∴圖象A為所求.

    答案 A

    試題詳情

    3.★右圖是函數(shù)y=f(x)的導(dǎo)函數(shù)y=f′(x)的圖象,則下面判斷正確的是 (   )

    試題詳情

    A.在區(qū)間(-2,1)內(nèi)f(x)是增函數(shù)

    B.在(1,3)內(nèi)f(x)是減函數(shù)

    C.在(4,5)內(nèi)f(x)是增函數(shù)

    D.在x=2時(shí)f(x)取到極小值

    分析 本題主要考查函數(shù)的單調(diào)性、極值、最值與導(dǎo)函數(shù)的關(guān)系.

    試題詳情

    解 在(-2,1)上,導(dǎo)函數(shù)的符號(hào)有正有負(fù),所以函數(shù)f(x)在這個(gè)區(qū)間上不是單調(diào)函數(shù);同理,函數(shù)在(1,3)上也不是單調(diào)函數(shù).在x=2的左側(cè),函數(shù)在(-,2)上是增函數(shù),在x=2的右側(cè),函數(shù)在(2,4)上是減函數(shù),所以在x=2時(shí),f(x)取到極大值;在(4,5)上導(dǎo)數(shù)的符號(hào)為正,所以函數(shù)在這個(gè)區(qū)間上為增函數(shù).

    答案 C

    試題詳情

    4.下列說(shuō)法正確的是(  )

    A.函數(shù)在閉區(qū)間上的極大值一定比極小值大

    B.函數(shù)在閉區(qū)間上的最大值一定是極大值

    試題詳情

    C.對(duì)于f(x)=x3+px2+2x+1,若|p|<,則f(x)無(wú)極值

    D.函數(shù)f(x)在區(qū)間(a,b)上一定存在最值

    分析 本題主要考查函數(shù)的最值與極值的關(guān)系,加深對(duì)最值與極值概念的理解.

    試題詳情

    解 函數(shù)在閉區(qū)間上的極大值與極小值的大小關(guān)系不確定;最大值并不一定是極大值,最大值有可能在區(qū)間端點(diǎn)處取得;函數(shù)在開(kāi)區(qū)間上不一定存在最值;對(duì)C選項(xiàng),f′(x)=3x2+2px+2,其中Δ=4p2-24=4(p2-6),當(dāng)|p|<時(shí),Δ<0,所以方程f′(x)=0無(wú)實(shí)根,即不存在導(dǎo)數(shù)為零的點(diǎn).所以函數(shù)f(x)無(wú)極值.

    答案 C

    試題詳情

    5.若函數(shù)f(x)=x3-ax2+1在(0,2)內(nèi)單調(diào)遞減,則實(shí)數(shù)a的取值范圍是(    )

    A.a≥3         B.a=2           C.a≤3             D.0<a<3

    分析 本題主要考查導(dǎo)數(shù)的應(yīng)用.利用函數(shù)的單調(diào)性及二次函數(shù)的圖象確定參數(shù)的范圍.

    試題詳情

    解 f′(x)=3x2-2ax=3x(x-a),由f(x)在(0,2)內(nèi)單調(diào)遞減,得3x(x-a)≤0,即a≥2,

    試題詳情

    ∴a≥3.

    答案A

    試題詳情

    6.★若f(x)=ax3+bx2+cx+d(a>0)在R上是增函數(shù),則(    )

    A.b2-4ac>0                B.b>0,c>0

    C.b=0,c>0                D.b2-3ac<0

    分析 本題考查導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系.

    解 f′(x)=3ax2+2bx+c.

    要使函數(shù)f(x)=ax3+bx2+cx+d(a>0)在R上是增函數(shù),

    只需f′(x)>0,即3ax2+2bx+c>0(a>0)對(duì)任意x∈R恒成立,

    試題詳情

    只需(2b)2-4×3ac<0,整理得b2-3ac<0.

    答案 D

    試題詳情

    7.已知函數(shù)f(x)=ax3+(2a-1)x2+2,若x=-1是y=f(x)的一個(gè)極值點(diǎn),則a的值為(   )

    試題詳情

    A.2            B.-2            C.          D.4

    分析 某點(diǎn)的導(dǎo)數(shù)為零是該點(diǎn)為極值點(diǎn)的必要不充分條件.

    解 f′(x)=3ax2+2(2a-1)x.

    ∵x=-1是y=f(x)的一個(gè)極值點(diǎn),

    試題詳情

    ∴3a×(-1)2+2(2a-1)×(-1)=0.

    試題詳情

    ∴a=2.

    答案 A

    試題詳情

    8.在區(qū)間(0,+∞)內(nèi),函數(shù)y=ex-x是(    )

    A.增函數(shù)           B.減函數(shù)           C.先增后減           D.先減后增

    分析 本題考查利用求導(dǎo)的方法求函數(shù)在給定區(qū)間上的單調(diào)性.

    解 ∵y′=ex-1,又x∈(0,+∞),

    試題詳情

    ∴ex>1.∴ex-1>0.∴y′>0.

    答案 A

    試題詳情

    9.函數(shù)y=f(x)=lnx-x在區(qū)間(0,e]上的最大值為(    )

    A.1-e        B.-1          C.-e         D.0

    分析 本題考查利用求導(dǎo)的方法求函數(shù)在閉區(qū)間上的最大值.

    試題詳情

    解 y′=-1,令y′=0,即x=1,在(0,e]上列表如下:

    x

    (0,1)

    1

    (1,e)

    e

    y′

    +

    0

    -

     

    y

    增函數(shù)

    極大值-1

    減函數(shù)

    1-e

    試題詳情

    由于f(e)=1-e,而-1>1-e,從而y最大=f(1)=-1.

    答案 B

    試題詳情

    10.函數(shù)y=x5-x3-2x,則下列判斷正確的是(   )

    A.在區(qū)間(-1,1)內(nèi)函數(shù)為增函數(shù)

    B.在區(qū)間(-∞,-1)內(nèi)函數(shù)為減函數(shù)

    C.在區(qū)間(-∞,1)內(nèi)函數(shù)為減函數(shù)

    D.在區(qū)間(1,+∞)內(nèi)函數(shù)為增函數(shù)

    分析 本題考查利用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的方法以及一元高次不等式的解法.

    解 y′=5x4-3x2-2=(5x2+2)(x2-1)

    =(5x2+2)(x+1)(x-1).

    ∵5x2+2>0恒成立,

    ∴當(dāng)x∈(-1,1)時(shí),y′<0,則f(x)為減函數(shù);

    當(dāng)x∈(-∞,-1)或x∈(1,+∞)時(shí) ,y′>0,則f(x)為增函數(shù).故選D.

    答案 D

    第Ⅱ卷(非選擇題共60分)

    試題詳情

    二、填空題(本大題共4小題,每小題4分,共16分.把答案填在題中橫線上)

    11.函數(shù)f(x)=x3-3x2+7的極大值是        .

    分析 本題考查利用求導(dǎo)的方法求函數(shù)的極值.

    解 f′(x)=3x2-6x.

    試題詳情

    令f′(x)=0,得x=0或x=2.

    作出函數(shù)f′(x)=3x2-6x的圖象.

    因?yàn)楫?dāng)x∈(-∞,0)時(shí),f(x)是增函數(shù);當(dāng)x∈(0,2)時(shí),f(x)是減函數(shù),

    試題詳情

    所以函數(shù)在x=0處有極大值f(0)=7.

    答案 7

    試題詳情

    12.函數(shù)y=4x2+的單調(diào)增區(qū)間為      .

    分析 本題考查利用求導(dǎo)的方法求比較復(fù)雜的函數(shù)的單調(diào)區(qū)間.對(duì)于非常規(guī)函數(shù),求導(dǎo)不失為一種好方法.

    試題詳情

    解 y′=8x-.要求增區(qū)間,只需y′>0,即8x->0.

    試題詳情

    解得x>.

    試題詳情

    所以函數(shù)的單調(diào)增區(qū)間為(,+∞).

    試題詳情

    答案 (,+∞)

    試題詳情

    13.函數(shù)y=3x2-2lnx的單調(diào)減區(qū)間為        .

    分析 本題考查常見(jiàn)函數(shù)的導(dǎo)數(shù)及導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系.

    試題詳情

    解 y′=6x-.

    試題詳情

    ∵6x-<0<0x(3x2-1)<0

    試題詳情

    x<-或0<x<.

    試題詳情

    又∵x>0,∴0<x<,

    試題詳情

    即函數(shù)的單調(diào)減區(qū)間為(0,).

    試題詳情

    答案 (0,)

    試題詳情

    14.函數(shù)y=x4-8x2+2在[-1,3]上的最大值為          .

    分析 本題考查函數(shù)在閉區(qū)間上的最大值.

    解法一 在y=(x2-4)2-14中把x2視為一個(gè)整體.

    ∵-1≤x≤3,

    試題詳情

    ∴0≤x2≤9.

    試題詳情

    ∴y最大=(9-4)2-14=11.

    解法二 y′=4x3-16x,令y′=0,

    試題詳情

    即4x3-16x=0.

    解得x=0或x=±2,列表如下:

    x

    (-1,0)

    0

    (0,2)

    2

    (2,3)

    y′

    +

    0

    -

    0

    +

    y

    增函數(shù)

    極大值2

    減函數(shù)

    極小值-14

    增函數(shù)

    試題詳情

    又∵f(-1)=-5,f(3)=11,故函數(shù)在區(qū)間[-1,3]上的最大值為11.

    答案 11

    試題詳情

    三、解答題(本大題共5小題,共44分.解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟)

    15.(本小題滿(mǎn)分8分)已知函數(shù)y=ax與y=-在區(qū)間(0,+∞)上都是減函數(shù),試確定函數(shù)y=ax3+bx2+5的單調(diào)區(qū)間.

    試題詳情

    分析 本題主要考查利用導(dǎo)數(shù)確定函數(shù)的單調(diào)區(qū)間.可先由函數(shù)y=ax與y=-的單調(diào)性確定a、b的取值范圍,再根據(jù)a、b的取值范圍去確定函數(shù)y=ax3+bx2+5的單調(diào)區(qū)間.

    試題詳情

    解 ∵函數(shù)y=ax與y=-在區(qū)間(0,+∞)上是減函數(shù),

    試題詳情

    ∴a<0,b<0.                   2分

    由y=ax3+bx2+5,得y′=3ax2+2bx.

    試題詳情

    令y′>0,即3ax2+2bx>0,∴<x<0.

    試題詳情

    因此當(dāng)x∈(,0)時(shí),函數(shù)為增函數(shù);      4分

    令y′<0,即3ax2+2bx<0,

    試題詳情

    ∴x<或x>0.                         6分

    試題詳情

    因此當(dāng)x∈(-∞,)時(shí),函數(shù)為減函數(shù);

    x∈(0,+∞)時(shí),函數(shù)也為減函數(shù).          ?8分

    試題詳情

    16.★(本小題滿(mǎn)分8分)當(dāng)室內(nèi)的有毒細(xì)菌開(kāi)始增加時(shí),就要使用殺菌劑.剛開(kāi)始使用的時(shí)候,細(xì)菌數(shù)量還會(huì)繼續(xù)增加,隨著時(shí)間的增加,它增加幅度逐漸變小,到一定時(shí)間,細(xì)菌數(shù)量開(kāi)始減少.如果使用殺菌劑t小時(shí)后的細(xì)菌數(shù)量為b(t)=105+104t-103t2.

    (1)求細(xì)菌在t=5與t=10時(shí)的瞬時(shí)速度;

    (2)細(xì)菌在哪段時(shí)間增加,在哪段時(shí)間減少?為什么?

    分析 本題考查導(dǎo)數(shù)的幾何意義及利用導(dǎo)數(shù)知識(shí)解決實(shí)際問(wèn)題的能力.

    解 (1)b′(t)=-2 000t+10 000,                       2分

    b′(t)|t=5=-2 000×5+10 000=0,

    b′(t)|t=10=-2 000×10+10 000=-10 000,

    試題詳情

    即細(xì)菌在t=5與t=10時(shí)的瞬時(shí)速度分別為0和-10 000.   4分

    (2)由-2 000t+10 000>0,得t<5,

    由-2 000t+10 000<0,得t>5,                            6分

    即細(xì)菌在t∈(0,5)時(shí)間段數(shù)量增加,在t∈(5,+∞)時(shí)間段數(shù)量減少.       8分

    17(本小題滿(mǎn)分8分)已知a為實(shí)數(shù),f(x)=(x2-4)(x-a).

    (1)求導(dǎo)數(shù)f′(x);

    (2)若f′(-1)=0,求f(x)在[-2,2]上的最大值和最小值.

    分析 本題主要考查函數(shù)、導(dǎo)數(shù)、不等式等基礎(chǔ)知識(shí),考查分析推理和知識(shí)的綜合應(yīng)用能力.求函數(shù)在閉區(qū)間的最值,只需比較導(dǎo)數(shù)為零的點(diǎn)與區(qū)間端點(diǎn)處的函數(shù)值的大小即可.

    解 (1)由原式得f(x)=x3-ax2-4x+4a,

    試題詳情

    ∴f′(x)=3x2-2ax-4.          2分

    試題詳情

    (2)由f′(-1)=0,得a=.      3分

    試題詳情

    此時(shí)有f(x)=(x2-4)(x-),

    試題詳情

    ∴f′(x)=3x2-x-4.

    試題詳情

    由f′(x)=0,得x=或x=-1.   5分

    試題詳情

    又f()=-,f(-1)=,f(-2)=0,f(2)=0,                  7分

    試題詳情

    ∴f(x)在[-2,2]上的最大值為,最小值為.       8分

    試題詳情

    18.★(本小題滿(mǎn)分10分)某產(chǎn)品按質(zhì)量分為10個(gè)檔次,生產(chǎn)第一檔(即最低檔次)的利潤(rùn)是每件8元,每提高一個(gè)檔次,利潤(rùn)每件增加2元,但在相同的時(shí)間內(nèi)產(chǎn)量減少3件.在相同的時(shí)間內(nèi),最低檔的產(chǎn)品可生產(chǎn)60件.問(wèn)在相同的時(shí)間內(nèi),生產(chǎn)第幾檔次的產(chǎn)品的總利潤(rùn)最大?有多少元?

    分析 在一定條件下,“利潤(rùn)最大”“用料最省”“面積最大”“效率最高”“強(qiáng)度最大”等問(wèn)題,在生產(chǎn)、生活中經(jīng)常用到,在數(shù)學(xué)上這類(lèi)問(wèn)題往往歸結(jié)為求函數(shù)的最值問(wèn)題.除了常見(jiàn)的求最值的方法外,還可用求導(dǎo)法求函數(shù)的最值.但無(wú)論采取何種方法都必須在函數(shù)的定義域內(nèi)進(jìn)行.

    解法一 設(shè)相同的時(shí)間內(nèi),生產(chǎn)第x(x∈N*,1≤x≤10)檔次的產(chǎn)品利潤(rùn)y最大.         2分

    依題意,得y=[8+2(x-1)][60-3(x-1)]            4分

    =-6x2+108x+378

    =-6(x-9)2+864(1≤x≤10),                       8分

    顯然,當(dāng)x=9時(shí),ymax=864(元),

    即在相同的時(shí)間內(nèi),生產(chǎn)第9檔次的產(chǎn)品的總利潤(rùn)最大,最大利潤(rùn)為864元.   10分

    試題詳情

    解法二 由上面解法得到y(tǒng)=-6x2+108x+378.

    試題詳情

    求導(dǎo)數(shù),得y′=-12x+108.

    令y′=-12x+108=0,

    試題詳情

    解得x=9.因?yàn)閤=9∈[1,10],y只有一個(gè)極值點(diǎn),所以它是最值點(diǎn),即在相同的時(shí)間內(nèi),生產(chǎn)第9檔次的產(chǎn)品利潤(rùn)最大,最大利潤(rùn)為864元.

    試題詳情

    19.(本小題滿(mǎn)分10分)某制造商制造并出售球形瓶裝的某種飲料.瓶子的制造成本是0.8πr2分(其中r是瓶子的半徑,單位是厘米).已知每出售1 mL的飲料,制造商可獲利0.2分,且制造商能制作的瓶子的最大半徑為6 cm.

    (1)瓶子半徑多大時(shí),能使每瓶飲料的利潤(rùn)最大?

    (2)瓶子半徑多大時(shí),每瓶飲料的利潤(rùn)最小?

    分析 本題考查導(dǎo)數(shù)的應(yīng)用及利用導(dǎo)數(shù)知識(shí)解決實(shí)際問(wèn)題的能力.

    解 由于瓶子的半徑為r,所以每瓶飲料的利潤(rùn)是

    試題詳情

    y=f(r)=0.2×πr3-0.8πr2=0.8π(-r2),0<r≤6.      2分

    試題詳情

    令f′(r)=0.8π(r2-2r)=0.

    當(dāng)r=2時(shí),f′(r)=0;

    當(dāng)r∈(0,2)時(shí),f′(r)<0;

    試題詳情

    當(dāng)r∈(2,6)時(shí),f′(r)>0.      4分

    因此,當(dāng)半徑r>2時(shí),f′(r)>0,它表示f(r)單調(diào)遞增,即半徑越大,利潤(rùn)越高;半徑r<2時(shí),f′(r)<0,它表示f(r)單調(diào)遞減,即半徑越大,利潤(rùn)越低.           6分

    (1)半徑為6 cm時(shí),利潤(rùn)最大.        8分

    (2)半徑為2 cm時(shí),利潤(rùn)最小,這時(shí)f(2)<0,表示此種瓶?jī)?nèi)飲料的利潤(rùn)還不夠瓶子的成本,此時(shí)利潤(rùn)是負(fù)值.                        10分

     

    試題詳情


    同步練習(xí)冊(cè)答案